IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i13p2920-d1182799.html
   My bibliography  Save this article

Novel Algorithm for Linearly Constrained Derivative Free Global Optimization of Lipschitz Functions

Author

Listed:
  • Linas Stripinis

    (Institute of Data Science and Digital Technologies, Vilnius University, Akademijos 4, LT-08663 Vilnius, Lithuania
    These authors contributed equally to this work.)

  • Remigijus Paulavičius

    (Institute of Data Science and Digital Technologies, Vilnius University, Akademijos 4, LT-08663 Vilnius, Lithuania
    These authors contributed equally to this work.)

Abstract

This paper introduces an innovative extension of the DIRECT algorithm specifically designed to solve global optimization problems that involve Lipschitz continuous functions subject to linear constraints. Our approach builds upon recent advancements in DIRECT-type algorithms, incorporating novel techniques for partitioning and selecting potential optimal hyper-rectangles. A key contribution lies in applying a new mapping technique to eliminate the infeasible region efficiently. This allows calculations to be performed only within the feasible region defined by linear constraints. We perform extensive tests using a diverse set of benchmark problems to evaluate the effectiveness and performance of the proposed algorithm compared to existing DIRECT solvers. Statistical analyses using Friedman and Wilcoxon tests demonstrate the superiority of a new algorithm in solving such problems.

Suggested Citation

  • Linas Stripinis & Remigijus Paulavičius, 2023. "Novel Algorithm for Linearly Constrained Derivative Free Global Optimization of Lipschitz Functions," Mathematics, MDPI, vol. 11(13), pages 1-19, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2920-:d:1182799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/13/2920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/13/2920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    2. Remigijus Paulavičius & Julius Žilinskas, 2014. "Simplicial Lipschitz optimization without the Lipschitz constant," Journal of Global Optimization, Springer, vol. 59(1), pages 23-40, May.
    3. Luis Rios & Nikolaos Sahinidis, 2013. "Derivative-free optimization: a review of algorithms and comparison of software implementations," Journal of Global Optimization, Springer, vol. 56(3), pages 1247-1293, July.
    4. Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.
    5. Linas Stripinis & Remigijus Paulavičius, 2022. "Experimental Study of Excessive Local Refinement Reduction Techniques for Global Optimization DIRECT-Type Algorithms," Mathematics, MDPI, vol. 10(20), pages 1-18, October.
    6. Na, Jonggeol & Lim, Youngsub & Han, Chonghun, 2017. "A modified DIRECT algorithm for hidden constraints in an LNG process optimization," Energy, Elsevier, vol. 126(C), pages 488-500.
    7. Remigijus Paulavičius & Yaroslav Sergeyev & Dmitri Kvasov & Julius Žilinskas, 2014. "Globally-biased Disimpl algorithm for expensive global optimization," Journal of Global Optimization, Springer, vol. 59(2), pages 545-567, July.
    8. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    9. Remigijus Paulavičius & Lakhdar Chiter & Julius Žilinskas, 2018. "Global optimization based on bisection of rectangles, function values at diagonals, and a set of Lipschitz constants," Journal of Global Optimization, Springer, vol. 71(1), pages 5-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazih-Eddine Belkacem & Lakhdar Chiter & Mohammed Louaked, 2024. "A Novel Approach to Enhance DIRECT -Type Algorithms for Hyper-Rectangle Identification," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    2. Kristian Sabo & Rudolf Scitovski & Šime Ungar & Zoran Tomljanović, 2024. "A method for searching for a globally optimal k-partition of higher-dimensional datasets," Journal of Global Optimization, Springer, vol. 89(3), pages 633-653, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nazih-Eddine Belkacem & Lakhdar Chiter & Mohammed Louaked, 2024. "A Novel Approach to Enhance DIRECT -Type Algorithms for Hyper-Rectangle Identification," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
    2. Donald R. Jones & Joaquim R. R. A. Martins, 2021. "The DIRECT algorithm: 25 years Later," Journal of Global Optimization, Springer, vol. 79(3), pages 521-566, March.
    3. Stripinis, Linas & Žilinskas, Julius & Casado, Leocadio G. & Paulavičius, Remigijus, 2021. "On MATLAB experience in accelerating DIRECT-GLce algorithm for constrained global optimization through dynamic data structures and parallelization," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    4. G. Liuzzi & S. Lucidi & V. Piccialli, 2016. "Exploiting derivative-free local searches in DIRECT-type algorithms for global optimization," Computational Optimization and Applications, Springer, vol. 65(2), pages 449-475, November.
    5. E. F. Campana & M. Diez & G. Liuzzi & S. Lucidi & R. Pellegrini & V. Piccialli & F. Rinaldi & A. Serani, 2018. "A multi-objective DIRECT algorithm for ship hull optimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 53-72, September.
    6. Jonas Mockus & Remigijus Paulavičius & Dainius Rusakevičius & Dmitrij Šešok & Julius Žilinskas, 2017. "Application of Reduced-set Pareto-Lipschitzian Optimization to truss optimization," Journal of Global Optimization, Springer, vol. 67(1), pages 425-450, January.
    7. Albertas Gimbutas & Antanas Žilinskas, 2018. "An algorithm of simplicial Lipschitz optimization with the bi-criteria selection of simplices for the bi-section," Journal of Global Optimization, Springer, vol. 71(1), pages 115-127, May.
    8. Stefan C. Endres & Carl Sandrock & Walter W. Focke, 2018. "A simplicial homology algorithm for Lipschitz optimisation," Journal of Global Optimization, Springer, vol. 72(2), pages 181-217, October.
    9. Kvasov, Dmitri E. & Mukhametzhanov, Marat S., 2018. "Metaheuristic vs. deterministic global optimization algorithms: The univariate case," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 245-259.
    10. Kaiwen Ma & Luis Miguel Rios & Atharv Bhosekar & Nikolaos V. Sahinidis & Sreekanth Rajagopalan, 2023. "Branch-and-Model: a derivative-free global optimization algorithm," Computational Optimization and Applications, Springer, vol. 85(2), pages 337-367, June.
    11. Jonas Bjerg Thomsen & Francesco Ferri & Jens Peter Kofoed & Kevin Black, 2018. "Cost Optimization of Mooring Solutions for Large Floating Wave Energy Converters," Energies, MDPI, vol. 11(1), pages 1-23, January.
    12. Aslambakhsh, Amir Hamzeh & Moosavian, Mohammad Ali & Amidpour, Majid & Hosseini, Mohammad & AmirAfshar, Saeedeh, 2018. "Global cost optimization of a mini-scale liquefied natural gas plant," Energy, Elsevier, vol. 148(C), pages 1191-1200.
    13. Gabriela Simonet & Julie Subervie & Driss Ezzine-De-Blas & Marina Cromberg & Amy Duchelle, 2015. "Paying smallholders not to cut down the amazon forest: impact evaluation of a REDD+ pilot project," Working Papers 1514, Chaire Economie du climat.
    14. Somayeh Moazeni & Warren B. Powell & Boris Defourny & Belgacem Bouzaiene-Ayari, 2017. "Parallel Nonstationary Direct Policy Search for Risk-Averse Stochastic Optimization," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 332-349, May.
    15. He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
    16. Yu, Taejong & Kim, Donghoi & Gundersen, Truls & Lim, Youngsub, 2023. "A feasibility study of HFO refrigerants for onboard BOG liquefaction processes," Energy, Elsevier, vol. 282(C).
    17. Jakubik, Johannes & Binding, Adrian & Feuerriegel, Stefan, 2021. "Directed particle swarm optimization with Gaussian-process-based function forecasting," European Journal of Operational Research, Elsevier, vol. 295(1), pages 157-169.
    18. Christophe Gouel & Nicolas Legrand, 2017. "Estimating the Competitive Storage Model with Trending Commodity Prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 744-763, June.
    19. M. Fernanda P. Costa & Ana Maria A. C. Rocha & Edite M. G. P. Fernandes, 2018. "Filter-based DIRECT method for constrained global optimization," Journal of Global Optimization, Springer, vol. 71(3), pages 517-536, July.
    20. Zhao, Jake, 2020. "Accounting for the corporate cash increase," European Economic Review, Elsevier, vol. 123(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:13:p:2920-:d:1182799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.