IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p936-d368607.html
   My bibliography  Save this article

Monarch Butterfly Optimization Based Convolutional Neural Network Design

Author

Listed:
  • Nebojsa Bacanin

    (Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia)

  • Timea Bezdan

    (Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia)

  • Eva Tuba

    (Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia)

  • Ivana Strumberger

    (Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia)

  • Milan Tuba

    (Faculty of Informatics and Computing, Singidunum University, Danijelova 32, 11010 Belgrade, Serbia)

Abstract

Convolutional neural networks have a broad spectrum of practical applications in computer vision. Currently, much of the data come from images, and it is crucial to have an efficient technique for processing these large amounts of data. Convolutional neural networks have proven to be very successful in tackling image processing tasks. However, the design of a network structure for a given problem entails a fine-tuning of the hyperparameters in order to achieve better accuracy. This process takes much time and requires effort and expertise from the domain. Designing convolutional neural networks’ architecture represents a typical NP-hard optimization problem, and some frameworks for generating network structures for a specific image classification tasks have been proposed. To address this issue, in this paper, we propose the hybridized monarch butterfly optimization algorithm. Based on the observed deficiencies of the original monarch butterfly optimization approach, we performed hybridization with two other state-of-the-art swarm intelligence algorithms. The proposed hybrid algorithm was firstly tested on a set of standard unconstrained benchmark instances, and later on, it was adapted for a convolutional neural network design problem. Comparative analysis with other state-of-the-art methods and algorithms, as well as with the original monarch butterfly optimization implementation was performed for both groups of simulations. Experimental results proved that our proposed method managed to obtain higher classification accuracy than other approaches, the results of which were published in the modern computer science literature.

Suggested Citation

  • Nebojsa Bacanin & Timea Bezdan & Eva Tuba & Ivana Strumberger & Milan Tuba, 2020. "Monarch Butterfly Optimization Based Convolutional Neural Network Design," Mathematics, MDPI, vol. 8(6), pages 1-33, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:936-:d:368607
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/936/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/936/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smarajit Ghosh & Manvir Kaur & Suman Bhullar & Vinod Karar, 2019. "Hybrid ABC-BAT for Solving Short-Term Hydrothermal Scheduling Problems," Energies, MDPI, vol. 12(3), pages 1-15, February.
    2. Marco Dorigo & Thomas Stützle, 2010. "Ant Colony Optimization: Overview and Recent Advances," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 227-263, Springer.
    3. Gai-Ge Wang & Suash Deb & Xinchao Zhao & Zhihua Cui, 2018. "A new monarch butterfly optimization with an improved crossover operator," Operational Research, Springer, vol. 18(3), pages 731-755, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaghoub Pourasad & Fausto Cavallaro, 2021. "A Novel Image Processing Approach to Enhancement and Compression of X-ray Images," IJERPH, MDPI, vol. 18(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aylin Ece Kayabekir & Zülal Akbay Arama & Gebrail Bekdaş & Sinan Melih Nigdeli & Zong Woo Geem, 2020. "Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications," Sustainability, MDPI, vol. 12(15), pages 1-30, July.
    2. Gui Li & Gai-Ge Wang & Shan Wang, 2021. "Two-Population Coevolutionary Algorithm with Dynamic Learning Strategy for Many-Objective Optimization," Mathematics, MDPI, vol. 9(4), pages 1-34, February.
    3. P. M. R. Bento & S. J. P. S. Mariano & M. R. A. Calado & L. A. F. M. Ferreira, 2020. "A Novel Lagrangian Multiplier Update Algorithm for Short-Term Hydro-Thermal Coordination," Energies, MDPI, vol. 13(24), pages 1-19, December.
    4. Saqib Akram & Muhammad Salman Fakhar & Syed Abdul Rahman Kashif & Ghulam Abbas & Nasim Ullah & Alsharef Mohammad & Mohamed Emad Farrag, 2022. "Introducing Adaptive Machine Learning Technique for Solving Short-Term Hydrothermal Scheduling with Prohibited Discharge Zones," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    5. Zühal Kartal & Mohan Krishnamoorthy & Andreas T. Ernst, 2019. "Heuristic algorithms for the single allocation p-hub center problem with routing considerations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 99-145, March.
    6. Pooja Tiwari & Vishnu Narayan Mishra & Raghav Prasad Parouha, 2024. "Modified differential evolution to solve systems of nonlinear equations," OPSEARCH, Springer;Operational Research Society of India, vol. 61(4), pages 1968-2001, December.
    7. Cheng-Long Wei & Gai-Ge Wang, 2020. "Hybrid Annealing Krill Herd and Quantum-Behaved Particle Swarm Optimization," Mathematics, MDPI, vol. 8(9), pages 1-23, August.
    8. Jiang Li & Lihong Guo & Yan Li & Chang Liu, 2019. "Enhancing Elephant Herding Optimization with Novel Individual Updating Strategies for Large-Scale Optimization Problems," Mathematics, MDPI, vol. 7(5), pages 1-35, April.
    9. Siqing Sheng & Qing Gu, 2019. "A Day-ahead and Day-in Decision Model Considering the Uncertainty of Multiple Kinds of Demand Response," Energies, MDPI, vol. 12(9), pages 1-26, May.
    10. Chen, Chengcheng & Wang, Xianchang & Yu, Helong & Wang, Mingjing & Chen, Huiling, 2021. "Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 291-318.
    11. Juan Li & Dan-dan Xiao & Hong Lei & Ting Zhang & Tian Tian, 2020. "Using Cuckoo Search Algorithm with Q -Learning and Genetic Operation to Solve the Problem of Logistics Distribution Center Location," Mathematics, MDPI, vol. 8(2), pages 1-32, January.
    12. Kucukkoc, Ibrahim & Li, Zixiang & Karaoglan, Aslan D. & Zhang, David Z., 2018. "Balancing of mixed-model two-sided assembly lines with underground workstations: A mathematical model and ant colony optimization algorithm," International Journal of Production Economics, Elsevier, vol. 205(C), pages 228-243.
    13. Minhee Kim & Junjae Chae, 2019. "Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material Handling Path," Mathematics, MDPI, vol. 7(2), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:936-:d:368607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.