IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v270y2015icp74-89.html
   My bibliography  Save this article

Lockage scheduling of Three Gorges-Gezhouba dams by hybrid of chaotic particle swarm optimization and heuristic-adjusted strategies

Author

Listed:
  • Yuan, Yanbin
  • Ji, Bin
  • Yuan, Xiaohui
  • Huang, Yuehua

Abstract

This paper establishes a mathematical model for lockage scheduling of Three Gorges-Gezhouba Dams (LSTGD) problem based on the requirement of scheduling procedure in Three Gorges-Gezhouba Dams (TG-GD) system. The lockage scheduling is separated into three sub-problems: lockage assignment (LA), timetable optimization (TO) and ship dispatch (SD) problem. We propose chaotic embedded particle swarm optimization algorithm to solve the LSTGD problem. Meanwhile, three different chaotic maps are studied and the results are compared to evaluate the effect of different maps on PSO. In addition, heuristic-adjusted strategies are proposed based on the analysis of scheduling regulation to enhance the performance of the final solution. Finally, the proposed method is tested with the real historical execution data of lockage scheduling system in Three Gorges-Gezhouba Dams. The results show that the proposed method is efficient for solving the LSTGD problem.

Suggested Citation

  • Yuan, Yanbin & Ji, Bin & Yuan, Xiaohui & Huang, Yuehua, 2015. "Lockage scheduling of Three Gorges-Gezhouba dams by hybrid of chaotic particle swarm optimization and heuristic-adjusted strategies," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 74-89.
  • Handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:74-89
    DOI: 10.1016/j.amc.2015.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315010644
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verstichel, J. & De Causmaecker, P. & Spieksma, F.C.R. & Vanden Berghe, G., 2014. "Exact and heuristic methods for placing ships in locks," European Journal of Operational Research, Elsevier, vol. 235(2), pages 387-398.
    2. Wang, Xiaoping & Zhao, Yunliang & Sun, Peng & Wang, Xiaobin, 2013. "An analysis on convergence of data-driven approach to ship lock scheduling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 88(C), pages 31-38.
    3. Ji, Bin & Yuan, Xiaohui & Chen, Zhihuan & Tian, Hao, 2014. "Improved gravitational search algorithm for unit commitment considering uncertainty of wind power," Energy, Elsevier, vol. 67(C), pages 52-62.
    4. Yuan, Xiaohui & Su, Anjun & Yuan, Yanbin & Nie, Hao & Wang, Liang, 2009. "An improved PSO for dynamic load dispatch of generators with valve-point effects," Energy, Elsevier, vol. 34(1), pages 67-74.
    5. Dai, Melody D. M. & Schonfeld, Paul, 1998. "Metamodels for estimating waterway delays through series of queues," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 1-19, January.
    6. Lin, Dung-Ying & Tsai, Yu-Yun, 2014. "The ship routing and freight assignment problem for daily frequency operation of maritime liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 52-70.
    7. Moslehi, Ghasem & Mahnam, Mehdi, 2011. "A Pareto approach to multi-objective flexible job-shop scheduling problem using particle swarm optimization and local search," International Journal of Production Economics, Elsevier, vol. 129(1), pages 14-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lijuan Yang & Eldon Y. Li & Yu Zhang, 2020. "Pricing and Subsidy Models for Transshipment Sustainability in the Three Gorges Dam Region of China," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    2. Ziyun Wu & Bin Ji & Samson S. Yu, 2024. "Modeling and Solution Algorithm for Green Lock Scheduling Problem on Inland Waterways," Mathematics, MDPI, vol. 12(8), pages 1-25, April.
    3. Jiang Li & Lihong Guo & Yan Li & Chang Liu, 2019. "Enhancing Elephant Herding Optimization with Novel Individual Updating Strategies for Large-Scale Optimization Problems," Mathematics, MDPI, vol. 7(5), pages 1-35, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bo & Wang, Shuming & Zhou, Xianzhong & Watada, Junzo, 2016. "Multi-objective unit commitment with wind penetration and emission concerns under stochastic and fuzzy uncertainties," Energy, Elsevier, vol. 111(C), pages 18-31.
    2. Ji, Bin & Zhang, Dezhi & Yu, Samson S. & Zhang, Binqiao, 2021. "Optimally solving the generalized serial-lock scheduling problem from a graph-theory-based multi-commodity network perspective," European Journal of Operational Research, Elsevier, vol. 288(1), pages 47-62.
    3. Lijuan Yang & Eldon Y. Li & Yu Zhang, 2020. "Pricing and Subsidy Models for Transshipment Sustainability in the Three Gorges Dam Region of China," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    4. Caris, An & Limbourg, Sabine & Macharis, Cathy & van Lier, Tom & Cools, Mario, 2014. "Integration of inland waterway transport in the intermodal supply chain: a taxonomy of research challenges," Journal of Transport Geography, Elsevier, vol. 41(C), pages 126-136.
    5. Ji, Bin & Zhang, Dezhi & Zhang, Zheng & Yu, Samson S. & Van Woensel, Tom, 2022. "The generalized serial-lock scheduling problem on inland waterway: A novel decomposition-based solution framework and efficient heuristic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    6. Mohammadi-ivatloo, Behnam & Rabiee, Abbas & Soroudi, Alireza & Ehsan, Mehdi, 2012. "Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch," Energy, Elsevier, vol. 44(1), pages 228-240.
    7. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Roosta, Alireza & Amiri, Babak, 2012. "A new multi-objective reserve constrained combined heat and power dynamic economic emission dispatch," Energy, Elsevier, vol. 42(1), pages 530-545.
    8. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    9. L D Smith & D C Sweeney & J F Campbell, 2009. "Simulation of alternative approaches to relieving congestion at locks in a river transportion system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(4), pages 519-533, April.
    10. Kumar, V.N.S.A. & Kumar, V. & Brady, M. & Garza-Reyes, Jose Arturo & Simpson, M., 2017. "Resolving forward-reverse logistics multi-period model using evolutionary algorithms," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 458-469.
    11. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    12. Sun, Zeyi & Li, Lin & Bego, Andres & Dababneh, Fadwa, 2015. "Customer-side electricity load management for sustainable manufacturing systems utilizing combined heat and power generation system," International Journal of Production Economics, Elsevier, vol. 165(C), pages 112-119.
    13. Narang, Nitin & Dhillon, J.S. & Kothari, D.P., 2012. "Multiobjective fixed head hydrothermal scheduling using integrated predator-prey optimization and Powell search method," Energy, Elsevier, vol. 47(1), pages 237-252.
    14. Yuan, Xiaohui & Chen, Zhihuan & Yuan, Yanbin & Huang, Yuehua, 2015. "Design of fuzzy sliding mode controller for hydraulic turbine regulating system via input state feedback linearization method," Energy, Elsevier, vol. 93(P1), pages 173-187.
    15. Bai, Yang & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Xie, Le, 2015. "A decomposition method for network-constrained unit commitment with AC power flow constraints," Energy, Elsevier, vol. 88(C), pages 595-603.
    16. Schulze, Tim & McKinnon, Ken, 2016. "The value of stochastic programming in day-ahead and intra-day generation unit commitment," Energy, Elsevier, vol. 101(C), pages 592-605.
    17. Soares, J. & Silva, M. & Sousa, T. & Vale, Z. & Morais, H., 2012. "Distributed energy resource short-term scheduling using Signaled Particle Swarm Optimization," Energy, Elsevier, vol. 42(1), pages 466-476.
    18. Wang, Hua & Wang, Shuaian & Meng, Qiang, 2014. "Simultaneous optimization of schedule coordination and cargo allocation for liner container shipping networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 261-273.
    19. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "Reserve constrained dynamic optimal power flow subject to valve-point effects, prohibited zones and multi-fuel constraints," Energy, Elsevier, vol. 47(1), pages 451-464.
    20. Wang, Wenxiao & Li, Chaoshun & Liao, Xiang & Qin, Hui, 2017. "Study on unit commitment problem considering pumped storage and renewable energy via a novel binary artificial sheep algorithm," Applied Energy, Elsevier, vol. 187(C), pages 612-626.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:74-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.