A Selective Overview of Quantile Regression for Large-Scale Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Joel L. Horowitz, 1998.
"Bootstrap Methods for Median Regression Models,"
Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
- Joel L. Horowitz, 1996. "Bootstrap Methods for Median Regression Models," Econometrics 9608004, University Library of Munich, Germany.
- Ye Fan & Nan Lin & Liqun Yu, 2024. "Distributed quantile regression for longitudinal big data," Computational Statistics, Springer, vol. 39(2), pages 751-779, April.
- Runze Li & Dennis K.J. Lin & Bing Li, 2013. "Statistical inference in massive data sets," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 29(5), pages 399-409, September.
- He, Xuming & Pan, Xiaoou & Tan, Kean Ming & Zhou, Wen-Xin, 2023. "Smoothed quantile regression with large-scale inference," Journal of Econometrics, Elsevier, vol. 232(2), pages 367-388.
- Michael I. Jordan & Jason D. Lee & Yun Yang, 2019. "Communication-Efficient Distributed Statistical Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 668-681, April.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Rong Jiang & Keming Yu, 2024. "Unconditional Quantile Regression for Streaming Datasets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1143-1154, October.
- Jianfeng Wei & Jian Yang & Xuewen Cheng & Jie Ding & Shengquan Li, 2023. "Adaptive Regression Analysis of Heterogeneous Data Streams via Models with Dynamic Effects," Mathematics, MDPI, vol. 11(24), pages 1-18, December.
- Baur, Dirk G., 2013.
"The structure and degree of dependence: A quantile regression approach,"
Journal of Banking & Finance, Elsevier, vol. 37(3), pages 786-798.
- Dirk G Baur, 2012. "The Structure and Degree of Dependence - A Quantile Regression Approach," Working Paper Series 170, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
- Chen, Lanjue & Zhou, Yong, 2020. "Quantile regression in big data: A divide and conquer based strategy," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Qifa Xu & Chao Cai & Cuixia Jiang & Fang Sun & Xue Huang, 2020. "Block average quantile regression for massive dataset," Statistical Papers, Springer, vol. 61(1), pages 141-165, February.
- Haiying Wang & Yanyuan Ma, 2021. "Optimal subsampling for quantile regression in big data," Biometrika, Biometrika Trust, vol. 108(1), pages 99-112.
- Xuetong Li & Yuan Gao & Hong Chang & Danyang Huang & Yingying Ma & Rui Pan & Haobo Qi & Feifei Wang & Shuyuan Wu & Ke Xu & Jing Zhou & Xuening Zhu & Yingqiu Zhu & Hansheng Wang, 2024. "A selective review on statistical methods for massive data computation: distributed computing, subsampling, and minibatch techniques," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 8(3), pages 163-185, July.
- HaiYing Wang & Min Yang & John Stufken, 2019. "Information-Based Optimal Subdata Selection for Big Data Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 393-405, January.
- HaiYing Wang & Rong Zhu & Ping Ma, 2018. "Optimal Subsampling for Large Sample Logistic Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 829-844, April.
- Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
- T. J. Cole, 1988. "Fitting Smoothed Centile Curves to Reference Data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 151(3), pages 385-406, May.
- Xingcai Zhou & Zhaoyang Jing & Chao Huang, 2024. "Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression," Mathematics, MDPI, vol. 12(5), pages 1-53, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Feifei Wang & Danyang Huang & Tianchen Gao & Shuyuan Wu & Hansheng Wang, 2022. "Sequential one‐step estimator by sub‐sampling for customer churn analysis with massive data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1753-1786, November.
- Wang, Kangning & Li, Shaomin, 2021. "Robust distributed modal regression for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
- Jun Yu & HaiYing Wang, 2022. "Subdata selection algorithm for linear model discrimination," Statistical Papers, Springer, vol. 63(6), pages 1883-1906, December.
- Lu Lin & Feng Li, 2023. "Global debiased DC estimations for biased estimators via pro forma regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 726-758, June.
- Ziyang Wang & HaiYing Wang & Nalini Ravishanker, 2023. "Subsampling in Longitudinal Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.
- Deng, Jiayi & Huang, Danyang & Ding, Yi & Zhu, Yingqiu & Jing, Bingyi & Zhang, Bo, 2024. "Subsampling spectral clustering for stochastic block models in large-scale networks," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
- Zhang, Haixiang & Wang, HaiYing, 2021. "Distributed subdata selection for big data via sampling-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Baolin Chen & Shanshan Song & Yong Zhou, 2024. "Estimation and testing of expectile regression with efficient subsampling for massive data," Statistical Papers, Springer, vol. 65(9), pages 5593-5613, December.
- Wang, Kangning & Li, Shaomin & Zhang, Benle, 2021. "Robust communication-efficient distributed composite quantile regression and variable selection for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
- Huy N. Chau & J. Lars Kirkby & Dang H. Nguyen & Duy Nguyen & Nhu N. Nguyen & Thai Nguyen, 2024. "On the Inversion‐Free Newton's Method and Its Applications," International Statistical Review, International Statistical Institute, vol. 92(2), pages 284-321, August.
- Jun Yu & Jiaqi Liu & HaiYing Wang, 2023. "Information-based optimal subdata selection for non-linear models," Statistical Papers, Springer, vol. 64(4), pages 1069-1093, August.
- Tianzhen Wang & Haixiang Zhang, 2022. "Optimal subsampling for multiplicative regression with massive data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(4), pages 418-449, November.
- Lulu Zuo & Haixiang Zhang & HaiYing Wang & Liuquan Sun, 2021. "Optimal subsample selection for massive logistic regression with distributed data," Computational Statistics, Springer, vol. 36(4), pages 2535-2562, December.
- Jun Jin & Chenyan Hao & Yewen Chen, 2025. "Composite quantile regression for a distributed system with non-randomly distributed data," Statistical Papers, Springer, vol. 66(1), pages 1-30, January.
- Yu-Zhu Tian & Man-Lai Tang & Wai-Sum Chan & Mao-Zai Tian, 2021. "Bayesian bridge-randomized penalized quantile regression for ordinal longitudinal data, with application to firm’s bond ratings," Computational Statistics, Springer, vol. 36(2), pages 1289-1319, June.
- Haowen Bao & Zongwu Cai & Yuying Sun & Shouyang Wang, 2023. "Penalized Model Averaging for High Dimensional Quantile Regressions," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202302, University of Kansas, Department of Economics, revised Jan 2023.
- Su, Miaomiao & Wang, Ruoyu & Wang, Qihua, 2022. "A two-stage optimal subsampling estimation for missing data problems with large-scale data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Xianwen Ding & Zhihuang Yang, 2024. "Adaptive Bi-Level Variable Selection for Quantile Regression Models with a Diverging Number of Covariates," Mathematics, MDPI, vol. 12(20), pages 1-23, October.
- Xing Li & Yujing Shao & Lei Wang, 2024. "Optimal subsampling for $$L_p$$ L p -quantile regression via decorrelated score," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(4), pages 1084-1104, December.
More about this item
Keywords
large-scale data; quantile regression; distributed computing; subsampling methods; renewable estimation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:837-:d:1603908. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.