IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i1d10.1007_s00362-024-01625-2.html
   My bibliography  Save this article

Composite quantile regression for a distributed system with non-randomly distributed data

Author

Listed:
  • Jun Jin

    (Yangzhou University)

  • Chenyan Hao

    (Yangzhou University)

  • Yewen Chen

    (University of Georgia)

Abstract

The composite quantile regression estimator is widely acknowledged for its robustness and efficiency, offering a compelling alternative to both ordinary least squares and quantile regression estimators in linear models. However, when data is not randomly distributed across different workers in distributed settings, existing methods for composite quantile regression become statistically inefficient. To address this limitation, we present a novel one-step upgraded pilot composite quantile regression method. Our proposed approach involves two essential steps. In the first step, we obtain a pilot estimator by leveraging a small random sample collected from different workers. Subsequently, in the second step, we perform one-step updating based on the pilot estimator, involving the summarization of sample moment quantities on each worker. The resulting estimator is theoretically proven to be as statistically efficient as the composite quantile regression estimator using the entire sample, without relying on restrictive assumptions about randomness. Furthermore, the resulting estimator inherits the robustness and efficiency advantages of the composite quantile regression estimator, while also being computationally efficient in terms of communication cost and storage usage. To validate the practical performance of our proposed method, we conduct numerical studies using simulated and real data, demonstrating its effectiveness in real-world scenarios.

Suggested Citation

  • Jun Jin & Chenyan Hao & Yewen Chen, 2025. "Composite quantile regression for a distributed system with non-randomly distributed data," Statistical Papers, Springer, vol. 66(1), pages 1-30, February.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:1:d:10.1007_s00362-024-01625-2
    DOI: 10.1007/s00362-024-01625-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01625-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01625-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:1:d:10.1007_s00362-024-01625-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.