Global debiased DC estimations for biased estimators via pro forma regression
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-023-00850-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jelena Bradic & Jianqing Fan & Weiwei Wang, 2011. "Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(3), pages 325-349, June.
- Tiejun Tong & Yuedong Wang, 2005. "Estimating residual variance in nonparametric regression using least squares," Biometrika, Biometrika Trust, vol. 92(4), pages 821-830, December.
- Rajen D. Shah & Richard J. Samworth, 2013. "Variable selection with error control: another look at stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(1), pages 55-80, January.
- Tang, Lu & Zhou, Ling & Song, Peter X.-K., 2020. "Distributed simultaneous inference in generalized linear models via confidence distribution," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
- Christian Bontemps, 2019.
"Moment-Based Tests under Parameter Uncertainty,"
The Review of Economics and Statistics, MIT Press, vol. 101(1), pages 146-159, March.
- Bontemps, Christian, 2018. "Moment-based tests under parameter uncertainty," IDEI Working Papers 18-883, Institut d'Économie Industrielle (IDEI), Toulouse.
- Christian Bontemps, 2019. "Moment-Based Tests under Parameter Uncertainty," Post-Print hal-02004687, HAL.
- Lu Lin & Feng Li, 2008. "Stable and bias-corrected estimation for nonparametric regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(4), pages 283-303.
- Runze Li & Dennis K.J. Lin & Bing Li, 2013. "Statistical inference in massive data sets," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 29(5), pages 399-409, September.
- Bo Kai & Runze Li & Hui Zou, 2010. "Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 49-69, January.
- HaiYing Wang & Min Yang & John Stufken, 2019. "Information-Based Optimal Subdata Selection for Big Data Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 393-405, January.
- Chengchun Shi & Wenbin Lu & Rui Song, 2018. "A Massive Data Framework for M-Estimators with Cubic-Rate," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1698-1709, October.
- Michael I. Jordan & Jason D. Lee & Yun Yang, 2019. "Communication-Efficient Distributed Statistical Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 668-681, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fengrui Di & Lei Wang, 2022. "Multi-round smoothed composite quantile regression for distributed data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 869-893, October.
- Zhang, Haixiang & Wang, HaiYing, 2021. "Distributed subdata selection for big data via sampling-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Lulu Zuo & Haixiang Zhang & HaiYing Wang & Liuquan Sun, 2021. "Optimal subsample selection for massive logistic regression with distributed data," Computational Statistics, Springer, vol. 36(4), pages 2535-2562, December.
- Chen, Canyi & Xu, Wangli & Zhu, Liping, 2022. "Distributed estimation in heterogeneous reduced rank regression: With application to order determination in sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
- Xiang, Pengcheng & Zhou, Ling & Tang, Lu, 2024. "Transfer learning via random forests: A one-shot federated approach," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
- Feifei Wang & Danyang Huang & Tianchen Gao & Shuyuan Wu & Hansheng Wang, 2022. "Sequential one‐step estimator by sub‐sampling for customer churn analysis with massive data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1753-1786, November.
- Yu, Dengdeng & Zhang, Li & Mizera, Ivan & Jiang, Bei & Kong, Linglong, 2019. "Sparse wavelet estimation in quantile regression with multiple functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 136(C), pages 12-29.
- Yaohong Yang & Lei Wang, 2023. "Communication-efficient sparse composite quantile regression for distributed data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 261-283, April.
- Yaeji Lim & Hee-Seok Oh, 2016. "Composite Quantile Periodogram for Spectral Analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(2), pages 195-221, March.
- Zhao, Weihua & Lian, Heng & Song, Xinyuan, 2017. "Composite quantile regression for correlated data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 15-33.
- Wei Wang & Shou‐En Lu & Jerry Q. Cheng & Minge Xie & John B. Kostis, 2022. "Multivariate survival analysis in big data: A divide‐and‐combine approach," Biometrics, The International Biometric Society, vol. 78(3), pages 852-866, September.
- Li, Degui & Li, Runze, 2016. "Local composite quantile regression smoothing for Harris recurrent Markov processes," Journal of Econometrics, Elsevier, vol. 194(1), pages 44-56.
- Rahim Alhamzawi, 2016. "Bayesian Analysis of Composite Quantile Regression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 358-373, October.
- Luo, Jiyu & Sun, Qiang & Zhou, Wen-Xin, 2022. "Distributed adaptive Huber regression," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
- Chaohui Guo & Hu Yang & Jing Lv, 2017. "Robust variable selection in high-dimensional varying coefficient models based on weighted composite quantile regression," Statistical Papers, Springer, vol. 58(4), pages 1009-1033, December.
- Wang, Kangning & Li, Shaomin & Zhang, Benle, 2021. "Robust communication-efficient distributed composite quantile regression and variable selection for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
- Xuejun Ma & Shaochen Wang & Wang Zhou, 2022. "Statistical inference in massive datasets by empirical likelihood," Computational Statistics, Springer, vol. 37(3), pages 1143-1164, July.
- Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
- Changgee Chang & Zhiqi Bu & Qi Long, 2023. "CEDAR: communication efficient distributed analysis for regressions," Biometrics, The International Biometric Society, vol. 79(3), pages 2357-2369, September.
- Shi, Jianwei & Qin, Guoyou & Zhu, Huichen & Zhu, Zhongyi, 2021. "Communication-efficient distributed M-estimation with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
More about this item
Keywords
Divide-and-conquer; Memory constraint; Debiased estimation; Composition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:32:y:2023:i:2:d:10.1007_s11749-023-00850-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.