IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i9d10.1007_s00362-024-01571-z.html
   My bibliography  Save this article

Estimation and testing of expectile regression with efficient subsampling for massive data

Author

Listed:
  • Baolin Chen

    (Capital University of Business and Economics)

  • Shanshan Song

    (Tongji University)

  • Yong Zhou

    (East China Normal University)

Abstract

Subsampling strategy plays a crucial role in statistical inference for massive data owing to its computing and storage superiority. The parameter estimation and hypothesis testing of expectile regression for massive data is of concern. This paper offers an alternative to the traditional asymmetric least square (ALS) estimator via smooth approximation of loss function. Then, an efficient subsampling algorithm based on Newton’s iteration is proposed. We prove consistency and asymptotic normality and provide the optimal subsampling probability and the proper order of smoothing parameter. We also apply the subsampling strategy for hypothesis testing, where the proposed test statistics have bigger power, compared with the test statistic based on the simple random subsampling. Simulation and two real data examples demonstrate the effectiveness of the proposed subsampling estimation and testing methods.

Suggested Citation

  • Baolin Chen & Shanshan Song & Yong Zhou, 2024. "Estimation and testing of expectile regression with efficient subsampling for massive data," Statistical Papers, Springer, vol. 65(9), pages 5593-5613, December.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:9:d:10.1007_s00362-024-01571-z
    DOI: 10.1007/s00362-024-01571-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-024-01571-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-024-01571-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:9:d:10.1007_s00362-024-01571-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.