IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v92y2024i2p284-321.html
   My bibliography  Save this article

On the Inversion‐Free Newton's Method and Its Applications

Author

Listed:
  • Huy N. Chau
  • J. Lars Kirkby
  • Dang H. Nguyen
  • Duy Nguyen
  • Nhu N. Nguyen
  • Thai Nguyen

Abstract

In this paper, we survey the recent development of inversion‐free Newton's method, which directly avoids computing the inversion of Hessian, and demonstrate its applications in estimating parameters of models such as linear and logistic regression. A detailed review of existing methodology is provided, along with comparisons of various competing algorithms. We provide numerical examples that highlight some deficiencies of existing approaches, and demonstrate how the inversion‐free methods can improve performance. Motivated by recent works in literature, we provide a unified subsampling framework that can be combined with the inversion‐free Newton's method to estimate model parameters including those of linear and logistic regression. Numerical examples are provided for illustration.

Suggested Citation

  • Huy N. Chau & J. Lars Kirkby & Dang H. Nguyen & Duy Nguyen & Nhu N. Nguyen & Thai Nguyen, 2024. "On the Inversion‐Free Newton's Method and Its Applications," International Statistical Review, International Statistical Institute, vol. 92(2), pages 284-321, August.
  • Handle: RePEc:bla:istatr:v:92:y:2024:i:2:p:284-321
    DOI: 10.1111/insr.12563
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12563
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12563?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:92:y:2024:i:2:p:284-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.