Subsampling spectral clustering for stochastic block models in large-scale networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2023.107835
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jianwei Hu & Hong Qin & Ting Yan & Yunpeng Zhao, 2020. "Corrected Bayesian Information Criterion for Stochastic Block Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1771-1783, December.
- Tianxi Li & Elizaveta Levina & Ji Zhu, 2020. "Network cross-validation by edge sampling," Biometrika, Biometrika Trust, vol. 107(2), pages 257-276.
- N. Binkiewicz & J. T. Vogelstein & K. Rohe, 2017. "Covariate-assisted spectral clustering," Biometrika, Biometrika Trust, vol. 104(2), pages 361-377.
- Haiying Wang & Yanyuan Ma, 2021. "Optimal subsampling for quantile regression in big data," Biometrika, Biometrika Trust, vol. 108(1), pages 99-112.
- HaiYing Wang & Min Yang & John Stufken, 2019. "Information-Based Optimal Subdata Selection for Big Data Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 393-405, January.
- Jun Yu & HaiYing Wang & Mingyao Ai & Huiming Zhang, 2022. "Optimal Distributed Subsampling for Maximum Quasi-Likelihood Estimators With Massive Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 265-276, January.
- HaiYing Wang & Rong Zhu & Ping Ma, 2018. "Optimal Subsampling for Large Sample Logistic Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 829-844, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jun Yu & Jiaqi Liu & HaiYing Wang, 2023. "Information-based optimal subdata selection for non-linear models," Statistical Papers, Springer, vol. 64(4), pages 1069-1093, August.
- Duarte, Belmiro P.M. & Atkinson, Anthony C. & Oliveira, Nuno M.C., 2024. "Using hierarchical information-theoretic criteria to optimize subsampling of extensive datasets," LSE Research Online Documents on Economics 121641, London School of Economics and Political Science, LSE Library.
- Tianzhen Wang & Haixiang Zhang, 2022. "Optimal subsampling for multiplicative regression with massive data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(4), pages 418-449, November.
- Ziyang Wang & HaiYing Wang & Nalini Ravishanker, 2023. "Subsampling in Longitudinal Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.
- Yuxin Sun & Wenjun Liu & Ye Tian, 2024. "Projection-Uniform Subsampling Methods for Big Data," Mathematics, MDPI, vol. 12(19), pages 1-16, September.
- Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
- Feifei Wang & Danyang Huang & Tianchen Gao & Shuyuan Wu & Hansheng Wang, 2022. "Sequential one‐step estimator by sub‐sampling for customer churn analysis with massive data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1753-1786, November.
- Su, Miaomiao & Wang, Ruoyu & Wang, Qihua, 2022. "A two-stage optimal subsampling estimation for missing data problems with large-scale data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Jun Yu & HaiYing Wang, 2022. "Subdata selection algorithm for linear model discrimination," Statistical Papers, Springer, vol. 63(6), pages 1883-1906, December.
- J. Lars Kirkby & Dang H. Nguyen & Duy Nguyen & Nhu N. Nguyen, 2022. "Inversion-free subsampling Newton’s method for large sample logistic regression," Statistical Papers, Springer, vol. 63(3), pages 943-963, June.
- Wu, Qianyong & Hu, Jiang, 2024. "Two-sample test of stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
- Li Guo & Wolfgang Karl Härdle & Yubo Tao, 2024.
"A Time-Varying Network for Cryptocurrencies,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 437-456, April.
- Li Guo & Wolfgang Karl Hardle & Yubo Tao, 2018. "A Time-Varying Network for Cryptocurrencies," Papers 1802.03708, arXiv.org, revised Nov 2022.
- Li Guo & Wolfgang Karl Hardle & Yubo Tao, 2021. "A Time-Varying Network for Cryptocurrencies," Papers 2108.11921, arXiv.org.
- Guo, Li & Härdle, Wolfgang & Tao, Yubo, 2021. "A time-varying network for cryptocurrencies," IRTG 1792 Discussion Papers 2021-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Amalan Mahendran & Helen Thompson & James M. McGree, 2023. "A model robust subsampling approach for Generalised Linear Models in big data settings," Statistical Papers, Springer, vol. 64(4), pages 1137-1157, August.
- Vainora, J., 2024. "Latent Position-Based Modeling of Parameter Heterogeneity," Cambridge Working Papers in Economics 2455, Faculty of Economics, University of Cambridge.
- Zhang, Haixiang & Wang, HaiYing, 2021. "Distributed subdata selection for big data via sampling-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
- Hector, Emily C. & Luo, Lan & Song, Peter X.-K., 2023. "Parallel-and-stream accelerator for computationally fast supervised learning," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
- Sokbae Lee & Serena Ng, 2020.
"An Econometric Perspective on Algorithmic Subsampling,"
Annual Review of Economics, Annual Reviews, vol. 12(1), pages 45-80, August.
- Sokbae Lee & Serena Ng, 2019. "An Econometric Perspective on Algorithmic Subsampling," Papers 1907.01954, arXiv.org, revised Apr 2020.
- Sokbae (Simon) Lee & Serena Ng, 2020. "An econometric perspective on algorithmic subsampling," CeMMAP working papers CWP18/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Yujing Shao & Lei Wang, 2022. "Optimal subsampling for composite quantile regression model in massive data," Statistical Papers, Springer, vol. 63(4), pages 1139-1161, August.
- Lee, JooChul & Wang, HaiYing & Schifano, Elizabeth D., 2020. "Online updating method to correct for measurement error in big data streams," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
- Seong‐H. Lee & Yanyuan Ma & Ying Wei & Jinbo Chen, 2023. "Optimal sampling for positive only electronic health record data," Biometrics, The International Biometric Society, vol. 79(4), pages 2974-2986, December.
More about this item
Keywords
Large-scale networks; Community detection; Spectral clustering; Network subsampling; Stochastic block model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:189:y:2024:i:c:s0167947323001469. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.