IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v33y2024i4d10.1007_s11749-024-00940-y.html
   My bibliography  Save this article

Optimal subsampling for $$L_p$$ L p -quantile regression via decorrelated score

Author

Listed:
  • Xing Li

    (Nankai University)

  • Yujing Shao

    (Nankai University)

  • Lei Wang

    (Nankai University)

Abstract

To balance robustness of quantile regression and effectiveness of expectile regression, we consider $$L_p$$ L p -quantile regression models with large-scale data and develop a unified optimal subsampling method to downsize the data volume and reduce computational burden. For low-dimensional $$L_p$$ L p -quantile regression models, two optimal subsampling probabilities based on the A- and L-optimality criteria are firstly proposed. For the preconceived low-dimensional parameter in high-dimensional $$L_p$$ L p -quantile regression models, a novel optimal subsampling decorrelated score function is proposed to mitigate the effect from nuisance parameter estimation and then two optimal decorrelated score subsampling probabilities are provided. The asymptotic properties of two optimal subsample estimators are established. The finite-sample performance of the proposed estimators is studied through simulations, and an application to Beijing Air Quality Dataset is also presented.

Suggested Citation

  • Xing Li & Yujing Shao & Lei Wang, 2024. "Optimal subsampling for $$L_p$$ L p -quantile regression via decorrelated score," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(4), pages 1084-1104, December.
  • Handle: RePEc:spr:testjl:v:33:y:2024:i:4:d:10.1007_s11749-024-00940-y
    DOI: 10.1007/s11749-024-00940-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-024-00940-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-024-00940-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yujing Shao & Lei Wang, 2022. "Optimal subsampling for composite quantile regression model in massive data," Statistical Papers, Springer, vol. 63(4), pages 1139-1161, August.
    2. HaiYing Wang & Min Yang & John Stufken, 2019. "Information-Based Optimal Subdata Selection for Big Data Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 393-405, January.
    3. Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
    4. Yaqiong Yao & HaiYing Wang, 2019. "Optimal subsampling for softmax regression," Statistical Papers, Springer, vol. 60(2), pages 585-599, April.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. HaiYing Wang & Rong Zhu & Ping Ma, 2018. "Optimal Subsampling for Large Sample Logistic Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 829-844, April.
    7. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    8. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baolin Chen & Shanshan Song & Yong Zhou, 2024. "Estimation and testing of expectile regression with efficient subsampling for massive data," Statistical Papers, Springer, vol. 65(9), pages 5593-5613, December.
    2. Su, Miaomiao & Wang, Ruoyu & Wang, Qihua, 2022. "A two-stage optimal subsampling estimation for missing data problems with large-scale data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    3. Jun Yu & HaiYing Wang, 2022. "Subdata selection algorithm for linear model discrimination," Statistical Papers, Springer, vol. 63(6), pages 1883-1906, December.
    4. Man, Rebeka & Tan, Kean Ming & Wang, Zian & Zhou, Wen-Xin, 2024. "Retire: Robust expectile regression in high dimensions," Journal of Econometrics, Elsevier, vol. 239(2).
    5. J. Lars Kirkby & Dang H. Nguyen & Duy Nguyen & Nhu N. Nguyen, 2022. "Inversion-free subsampling Newton’s method for large sample logistic regression," Statistical Papers, Springer, vol. 63(3), pages 943-963, June.
    6. Ziyang Wang & HaiYing Wang & Nalini Ravishanker, 2023. "Subsampling in Longitudinal Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.
    7. Amalan Mahendran & Helen Thompson & James M. McGree, 2023. "A model robust subsampling approach for Generalised Linear Models in big data settings," Statistical Papers, Springer, vol. 64(4), pages 1137-1157, August.
    8. Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
    9. Huy N. Chau & J. Lars Kirkby & Dang H. Nguyen & Duy Nguyen & Nhu N. Nguyen & Thai Nguyen, 2024. "On the Inversion‐Free Newton's Method and Its Applications," International Statistical Review, International Statistical Institute, vol. 92(2), pages 284-321, August.
    10. Lina Liao & Cheolwoo Park & Hosik Choi, 2019. "Penalized expectile regression: an alternative to penalized quantile regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(2), pages 409-438, April.
    11. Yuxin Sun & Wenjun Liu & Ye Tian, 2024. "Projection-Uniform Subsampling Methods for Big Data," Mathematics, MDPI, vol. 12(19), pages 1-16, September.
    12. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    13. Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
    14. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    15. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    16. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    17. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    18. Zhang, Feipeng & Xu, Yixiong & Fan, Caiyun, 2023. "Nonparametric inference of expectile-based value-at-risk for financial time series with application to risk assessment," International Review of Financial Analysis, Elsevier, vol. 90(C).
    19. Halkos, George E., 2011. "Nonparametric modelling of biodiversity: Determinants of threatened species," Journal of Policy Modeling, Elsevier, vol. 33(4), pages 618-635, July.
    20. Monica Pratesi & M. Ranalli & Nicola Salvati, 2009. "Nonparametric -quantile regression using penalised splines," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(3), pages 287-304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:33:y:2024:i:4:d:10.1007_s11749-024-00940-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.