IDEAS home Printed from https://ideas.repec.org/p/uts/wpaper/170.html
   My bibliography  Save this paper

The Structure and Degree of Dependence - A Quantile Regression Approach

Author

Listed:
  • Dirk G Baur

Abstract

The copula function defines the degree of dependence and the structure of dependence. This paper proposes an alternative framework to decompose the dependence using quantile regression. It is demonstrated that the methodology provides a detailed picture of dependence including asymmetric and non-linear relationships. In addition, changes in the degree or structure of dependence can be modelled and tested for each quantile of the distribution. The empirical part applies the framework to three different sets of financial time-series and demonstrates substantial differences in dependence patterns among asset classes and through time. The analysis of 54 global equity markets shows that detailed information about the structure of dependence is crucial to adequately assess the benefits of diversification in normal times and crisis times.

Suggested Citation

  • Dirk G Baur, 2012. "The Structure and Degree of Dependence - A Quantile Regression Approach," Working Paper Series 170, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
  • Handle: RePEc:uts:wpaper:170
    as

    Download full text from publisher

    File URL: http://www.finance.uts.edu.au/research/wpapers/wp170.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Taimur Baig & Ilan Goldfajn, 1999. "Financial Market Contagion in the Asian Crisis," IMF Staff Papers, Palgrave Macmillan, vol. 46(2), pages 1-3.
    2. Ke Tang & Wei Xiong, 2012. "Index Investment and the Financialization of Commodities," Financial Analysts Journal, Taylor & Francis Journals, vol. 68(6), pages 54-74, November.
    3. Markus K. Brunnermeier & Lasse Heje Pedersen, 2009. "Market Liquidity and Funding Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 22(6), pages 2201-2238, June.
    4. Lee, Bong Soo & Li, Ming-Yuan Leon, 2012. "Diversification and risk-adjusted performance: A quantile regression approach," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 2157-2173.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    7. Xiaohong Chen & Roger Koenker & Zhijie Xiao, 2009. "Copula-based nonlinear quantile autoregression," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 50-67, January.
    8. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    9. Corsetti, Giancarlo & Pericoli, Marcello & Sbracia, Massimo, 2005. "'Some contagion, some interdependence': More pitfalls in tests of financial contagion," Journal of International Money and Finance, Elsevier, vol. 24(8), pages 1177-1199, December.
    10. Brian H. Boyer & Tomomi Kumagai & Kathy Yuan, 2006. "How Do Crises Spread? Evidence from Accessible and Inaccessible Stock Indices," Journal of Finance, American Finance Association, vol. 61(2), pages 957-1003, April.
    11. Nguyen, Cuong C. & Bhatti, M. Ishaq, 2012. "Copula model dependency between oil prices and stock markets: Evidence from China and Vietnam," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 758-773.
    12. Isabelle Huault & V. Perret & S. Charreire-Petit, 2007. "Management," Post-Print halshs-00337676, HAL.
    13. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
    14. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2011. "International diversification: A copula approach," Journal of Banking & Finance, Elsevier, vol. 35(2), pages 403-417, February.
    15. Kee-Hong Bae & G. Andrew Karolyi & René M. Stulz, 2003. "A New Approach to Measuring Financial Contagion," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 717-763, July.
    16. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    17. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    18. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    19. Garcia, René & Tsafack, Georges, 2011. "Dependence structure and extreme comovements in international equity and bond markets," Journal of Banking & Finance, Elsevier, vol. 35(8), pages 1954-1970, August.
    20. Marcello Pericoli & Massimo Sbracia, 2003. "A Primer on Financial Contagion," Journal of Economic Surveys, Wiley Blackwell, vol. 17(4), pages 571-608, September.
    21. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.
    22. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    23. Baur, Dirk & Schulze, Niels, 2005. "Coexceedances in financial markets--a quantile regression analysis of contagion," Emerging Markets Review, Elsevier, vol. 6(1), pages 21-43, April.
    24. Ling Hu, 2006. "Dependence patterns across financial markets: a mixed copula approach," Applied Financial Economics, Taylor & Francis Journals, vol. 16(10), pages 717-729.
    25. Baur, Dirk G. & Fry, Renée A., 2009. "Multivariate contagion and interdependence," Journal of Asian Economics, Elsevier, vol. 20(4), pages 353-366, September.
    26. Mardi Dungey & Renee Fry & Brenda Gonzalez-Hermosillo & Vance Martin, 2005. "Empirical modelling of contagion: a review of methodologies," Quantitative Finance, Taylor & Francis Journals, vol. 5(1), pages 9-24.
    27. Rodriguez, Juan Carlos, 2007. "Measuring financial contagion: A Copula approach," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 401-423, June.
    28. Bhatti, M. Ishaq & Nguyen, Cuong C., 2012. "Diversification evidence from international equity markets using extreme values and stochastic copulas," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(3), pages 622-646.
    29. Albert S. Kyle & Wei Xiong, 2001. "Contagion as a Wealth Effect," Journal of Finance, American Finance Association, vol. 56(4), pages 1401-1440, August.
    30. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    2. Mensah, Jones Odei & Premaratne, Gamini, 2014. "Dependence patterns among Banking Sectors in Asia: A Copula Approach," MPRA Paper 60119, University Library of Munich, Germany.
    3. Cai, Charlie X. & Mobarek, Asma & Zhang, Qi, 2017. "International stock market leadership and its determinants," Journal of Financial Stability, Elsevier, vol. 33(C), pages 150-162.
    4. Wuyi Ye & Kebing Luo & Shaofu Du, 2014. "Measuring Contagion of Subprime Crisis Based on MVMQ-CAViaR Method," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-12, June.
    5. Rajan Sruthi & Santhakumar Shijin, 2020. "Investigating liquidity constraints as a channel of contagion: a regime switching approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-21, December.
    6. Paulo Horta & Carlos Mendes & Isabel Vieira, 2010. "Contagion effects of the subprime crisis in the European NYSE Euronext markets," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 9(2), pages 115-140, August.
    7. Baur, Dirk G. & Fry, Renée A., 2009. "Multivariate contagion and interdependence," Journal of Asian Economics, Elsevier, vol. 20(4), pages 353-366, September.
    8. Georgios Bampinas & Theodore Panagiotidis, 2017. "Oil and stock markets before and after financial crises: A local Gaussian correlation approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(12), pages 1179-1204, December.
    9. Ahmad, Wasim & Sehgal, Sanjay & Bhanumurthy, N.R., 2013. "Eurozone crisis and BRIICKS stock markets: Contagion or market interdependence?," Economic Modelling, Elsevier, vol. 33(C), pages 209-225.
    10. Samitas, Aristeidis & Tsakalos, Ioannis, 2013. "How can a small country affect the European economy? The Greek contagion phenomenon," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 25(C), pages 18-32.
    11. Philippas, Dionisis & Siriopoulos, Costas, 2013. "Putting the “C” into crisis: Contagion, correlations and copulas on EMU bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 27(C), pages 161-176.
    12. Sim, Nicholas, 2016. "Modeling the dependence structures of financial assets through the Copula Quantile-on-Quantile approach," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 31-45.
    13. Choe, Kwang-il & Choi, Pilsun & Nam, Kiseok & Vahid, Farshid, 2012. "Testing financial contagion on heteroskedastic asset returns in time-varying conditional correlation," Pacific-Basin Finance Journal, Elsevier, vol. 20(2), pages 271-291.
    14. Wang, Yi-Chiuan & Wu, Jyh-Lin & Lai, Yi-Hao, 2013. "A revisit to the dependence structure between the stock and foreign exchange markets: A dependence-switching copula approach," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1706-1719.
    15. Bampinas, Georgios & Panagiotidis, Theodore & Politsidis, Panagiotis N., 2023. "Sovereign bond and CDS market contagion: A story from the Eurozone crisis," Journal of International Money and Finance, Elsevier, vol. 137(C).
    16. Maria Kasch & Massimiliano Caporin, 2013. "Volatility Threshold Dynamic Conditional Correlations: An International Analysis," Journal of Financial Econometrics, Oxford University Press, vol. 11(4), pages 706-742, September.
    17. Pablo Jose Campos de Carvalho & Aparna Gupta, 2018. "Multivariate Jump Diffusion Model with Markovian Contagion," Working Papers Series 482, Central Bank of Brazil, Research Department.
    18. Michael A. Goldstein & Joseph McCarthy & Alexei G. Orlov, 2019. "The Core, Periphery, and Beyond: Stock Market Comovements among EU and Non‐EU Countries," The Financial Review, Eastern Finance Association, vol. 54(1), pages 5-56, February.
    19. Baur, Dirk G., 2012. "Financial contagion and the real economy," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2680-2692.
    20. Shegorika Rajwani & Dilip Kumar, 2016. "Asymmetric Dynamic Conditional Correlation Approach to Financial Contagion: A Study of Asian Markets," Global Business Review, International Management Institute, vol. 17(6), pages 1339-1356, December.

    More about this item

    Keywords

    quantile regression; copula; dependence modelling; tail dependence; contagion; financial crises;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:wpaper:170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/sfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.