IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i526p668-681.html
   My bibliography  Save this article

Communication-Efficient Distributed Statistical Inference

Author

Listed:
  • Michael I. Jordan
  • Jason D. Lee
  • Yun Yang

Abstract

We present a communication-efficient surrogate likelihood (CSL) framework for solving distributed statistical inference problems. CSL provides a communication-efficient surrogate to the global likelihood that can be used for low-dimensional estimation, high-dimensional regularized estimation, and Bayesian inference. For low-dimensional estimation, CSL provably improves upon naive averaging schemes and facilitates the construction of confidence intervals. For high-dimensional regularized estimation, CSL leads to a minimax-optimal estimator with controlled communication cost. For Bayesian inference, CSL can be used to form a communication-efficient quasi-posterior distribution that converges to the true posterior. This quasi-posterior procedure significantly improves the computational efficiency of Markov chain Monte Carlo (MCMC) algorithms even in a nondistributed setting. We present both theoretical analysis and experiments to explore the properties of the CSL approximation. Supplementary materials for this article are available online.

Suggested Citation

  • Michael I. Jordan & Jason D. Lee & Yun Yang, 2019. "Communication-Efficient Distributed Statistical Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 668-681, April.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:668-681
    DOI: 10.1080/01621459.2018.1429274
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2018.1429274
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2018.1429274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:526:p:668-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.