IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2023i1p25-d1305016.html
   My bibliography  Save this article

Stochastic Forecasting of Regional Age-Specific Fertility Rates: An Outlook for German NUTS-3 Regions

Author

Listed:
  • Patrizio Vanella

    (Demography Cluster, Department of Health Monitoring & Biometrics, aQua Institute, 37073 Göttingen, Germany
    Chair of Empirical Methods in Social Science and Demography, University of Rostock, 18051 Rostock, Germany
    Working Group of Demographic Methods, German Demographic Society (DGD), 37073 Göttingen, Germany)

  • Max J. Hassenstein

    (Demography Cluster, Department of Health Monitoring & Biometrics, aQua Institute, 37073 Göttingen, Germany)

Abstract

Regional fertility forecasts are important for long-term planning in a variety of fields that include future birth numbers in their forecast, such as school or kindergarten planning. They are one of the major components of regional population forecasts as well. Therefore, it is important to construct reliable forecasts that are based on sophisticated models that cover the high complexity of future regional fertility. We suggest a novel forecast model for forecasting regional age-specific fertility rates that covers long-term trends by time series models, demographic and regional correlations by principal component analysis, and future uncertainty by Monte Carlo simulation. The model is applied to all German NUTS-3 regions (districts/Kreise) simultaneously, where we forecast all regional age-specific fertility rates through the period of 2022–2045. The results from the simulations are presented via median predictions with 75% prediction intervals of the regional total fertility rates. The simulation shows strong regional heterogeneities in long-term fertility trends that are associated with the historical background of Germany, housing supply for families, opportunities for education, and the strength of labor markets, inter alia.

Suggested Citation

  • Patrizio Vanella & Max J. Hassenstein, 2023. "Stochastic Forecasting of Regional Age-Specific Fertility Rates: An Outlook for German NUTS-3 Regions," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
  • Handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:25-:d:1305016
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/1/25/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/1/25/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ševčíková, Hana & Alkema, Leontine & Raftery, Adrian, 2011. "bayesTFR: An R package for Probabilistic Projections of the Total Fertility Rate," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i01).
    2. Leontine Alkema & Adrian Raftery & Patrick Gerland & Samuel Clark & François Pelletier & Thomas Buettner & Gerhard Heilig, 2011. "Probabilistic Projections of the Total Fertility Rate for All Countries," Demography, Springer;Population Association of America (PAA), vol. 48(3), pages 815-839, August.
    3. Johann Fuchs & Doris Söhnlein & Brigitte Weber & Enzo Weber, 2018. "Stochastic Forecasting of Labor Supply and Population: An Integrated Model," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(1), pages 33-58, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrizio Vanella & Philipp Deschermeier & Christina B. Wilke, 2020. "An Overview of Population Projections—Methodological Concepts, International Data Availability, and Use Cases," Forecasting, MDPI, vol. 2(3), pages 1-18, September.
    2. Heer, Burkhard & Polito, Vito & Wickens, Michael R., 2020. "Population aging, social security and fiscal limits," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    3. Mei Sang & Jing Jiang & Xin Huang & Feifei Zhu & Qian Wang, 2024. "Spatial and temporal changes in population distribution and population projection at county level in China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    4. Dominik Paprotny, 2021. "Convergence Between Developed and Developing Countries: A Centennial Perspective," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 153(1), pages 193-225, January.
    5. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    6. Meng Xu & Helge Brunborg & Joel E. Cohen, 2017. "Evaluating multi-regional population projections with Taylor’s law of mean–variance scaling and its generalisation," Journal of Population Research, Springer, vol. 34(1), pages 79-99, March.
    7. Kevin Rennert & Brian C. Prest & William A. Pizer & Richard G. Newell & David Anthoff & Cora Kingdon & Lisa Rennels & Roger Cooke & Adrian E. Raftery & Hana Sevcikova & Frank Errickson, 2021. "The Social Cost of Carbon: Advances in Long-Term Probabilistic Projections of Population, GDP, Emissions, and Discount Rates," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 52(2 (Fall)), pages 223-305.
    8. Vanella, Patrizio, 2017. "Age- and Sex-Specific Fertility in Germany until the Year 2040 - The Impact of International Migration," Hannover Economic Papers (HEP) dp-606, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    9. Daphne H. Liu & Adrian E. Raftery, 2020. "How Do Education and Family Planning Accelerate Fertility Decline?," Population and Development Review, The Population Council, Inc., vol. 46(3), pages 409-441, September.
    10. Asako Ohinata & Dimitrios Varvarigos, 2020. "Demographic Transition and Fertility Rebound in Economic Development," Scandinavian Journal of Economics, Wiley Blackwell, vol. 122(4), pages 1640-1670, October.
    11. Michael Pearce & Adrian E. Raftery, 2021. "Probabilistic forecasting of maximum human lifespan by 2100 using Bayesian population projections," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(52), pages 1271-1294.
    12. Liu Qiang & Fernando Rios-Avila & Han Jiqin, 2020. "Is China's Low Fertility Rate Caused by the Population Control Policy?," Economics Working Paper Archive wp_943, Levy Economics Institute.
    13. Jane N. O’Sullivan, 2023. "Demographic Delusions: World Population Growth Is Exceeding Most Projections and Jeopardising Scenarios for Sustainable Futures," World, MDPI, vol. 4(3), pages 1-24, September.
    14. Carl P. Schmertmann & Marcos R. Gonzaga, 2018. "Bayesian Estimation of Age-Specific Mortality and Life Expectancy for Small Areas With Defective Vital Records," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1363-1388, August.
    15. Phoebe Koundouri & Georgios I. Papayiannis & Achilleas Vassilopoulos & Athanasios Yannacopoulos, 2022. "A general framework for the generation of probabilistic socioeconomic scenarios and risk quantification concerning food security with application in the Upper Nile river basin," DEOS Working Papers 2203, Athens University of Economics and Business.
    16. Koundouri, Phoebe & Papayiannis, Georgios I. & Vassilopoulos, Achilleas & Yannacopoulos, Athanasios N., 2023. "Probabilistic Scenario-Based Assessment of National Food Security Risks with Application to Egypt and Ethiopia," MPRA Paper 122007, University Library of Munich, Germany.
    17. Philip G. Pardey & Jason M. Beddow & Terrance M. Hurley & Timothy K.M. Beatty & Vernon R. Eidman, 2014. "A Bounds Analysis of World Food Futures: Global Agriculture Through to 2050," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(4), pages 571-589, October.
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Bailey Fosdick & Adrian E. Raftery, 2014. "Regional probabilistic fertility forecasting by modeling between-country correlations," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(35), pages 1011-1034.
    20. Niall Newsham & Francisco Rowe, 2021. "Projecting the demographic impact of Syrian migration in a rapidly ageing society, Germany," Journal of Geographical Systems, Springer, vol. 23(2), pages 231-261, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2023:i:1:p:25-:d:1305016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.