IDEAS home Printed from https://ideas.repec.org/a/gam/jworld/v4y2023i3p34-568d1234407.html
   My bibliography  Save this article

Demographic Delusions: World Population Growth Is Exceeding Most Projections and Jeopardising Scenarios for Sustainable Futures

Author

Listed:
  • Jane N. O’Sullivan

    (School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia)

Abstract

The size of the world’s population has profound implications for demand for food, energy and resources, land use change and greenhouse gas emissions. This study examines why most population projections have underestimated world population growth, and the implications for actions required to achieve sustainable societies. The main determinant of future population is family size choices. Population projections by different research groups embed different assumptions about drivers of fertility decline. The common assumptions that fertility decline is driven by economic betterment, urbanisation or education levels are not well supported in historical evidence. In contrast, voluntary family planning provision and promotion achieved rapid fertility decline, even in poor, rural and illiterate communities. Projections based on education and income as drivers of fertility decline ignore the reverse causation, that lowering fertility through family planning interventions enabled economic advancement and improved women’s education access. In recent decades, support for family planning has waned, and global fertility decline has decelerated as a result. Projections calibrated across the decades of strong family planning support have not acknowledged this change and are consequently underestimating global population growth. Scenarios used to model sustainable futures have used overly optimistic population projections while inferring these outcomes will happen without targeted measures to bring them about. Unless political will is rapidly restored for voluntary family planning programs, the global population will almost certainly exceed 10 billion, rendering sustainable food security and a safe climate unachievable.

Suggested Citation

  • Jane N. O’Sullivan, 2023. "Demographic Delusions: World Population Growth Is Exceeding Most Projections and Jeopardising Scenarios for Sustainable Futures," World, MDPI, vol. 4(3), pages 1-24, September.
  • Handle: RePEc:gam:jworld:v:4:y:2023:i:3:p:34-568:d:1234407
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-4060/4/3/34/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-4060/4/3/34/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Buettner, 2020. "World Population Prospects – A Long View," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 520-521, pages 9-27.
    2. Stacey H. Chen & Yen-Chien Chen & Jin-Tan Liu, 2019. "The Impact of Family Composition on Educational Achievement," Journal of Human Resources, University of Wisconsin Press, vol. 54(1), pages 122-170.
    3. Fanny A. Kluge & Emilio Zagheni & Elke Loichinger & Tobias C. Vogt, 2014. "The advantages of demographic change after the wave: fewer and older, but healthier, greener, and more productive?," MPIDR Working Papers WP-2014-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    4. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    5. Basu, Alaka Malwade, 2002. "Why does Education Lead to Lower Fertility? A Critical Review of Some of the Possibilities," World Development, Elsevier, vol. 30(10), pages 1779-1790, October.
    6. Ševčíková, Hana & Alkema, Leontine & Raftery, Adrian, 2011. "bayesTFR: An R package for Probabilistic Projections of the Total Fertility Rate," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i01).
    7. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    8. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    9. Leontine Alkema & Adrian Raftery & Patrick Gerland & Samuel Clark & François Pelletier & Thomas Buettner & Gerhard Heilig, 2011. "Probabilistic Projections of the Total Fertility Rate for All Countries," Demography, Springer;Population Association of America (PAA), vol. 48(3), pages 815-839, August.
    10. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    2. Koundouri, Phoebe & Papayiannis, Georgios I. & Vassilopoulos, Achilleas & Yannacopoulos, Athanasios N., 2023. "Probabilistic Scenario-Based Assessment of National Food Security Risks with Application to Egypt and Ethiopia," MPRA Paper 122007, University Library of Munich, Germany.
    3. Alexia Prskawetz & Bernhard Hammer, 2018. "Does education matter? – economic dependency ratios by education," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 16(1), pages 111-134.
    4. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    5. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    6. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    7. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    9. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    10. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    11. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    12. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    13. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    14. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    15. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.
    16. Julien CALAS & Antoine GODIN & Julie MAURIN (AFD) & and Etienne ESPAGNE (World Bank), 2022. "Global biodiversity scenarios: what do they tell us for biodiversity-related socioeconomic impacts?," Working Paper 1a39419b-ef1d-4b82-a7be-d, Agence française de développement.
    17. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    18. Moyer, Jonathan D. & Hedden, Steve, 2020. "Are we on the right path to achieve the sustainable development goals?," World Development, Elsevier, vol. 127(C).
    19. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    20. Ansari, Dawud & Holz, Franziska & Al-Kuhlani, Hashem, 2020. "Energy Outlooks Compared: Global and Regional Insights," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 9(1), pages 21-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jworld:v:4:y:2023:i:3:p:34-568:d:1234407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.