IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p914-d1064883.html
   My bibliography  Save this article

Finite-Time Command Filtered Control for Oxygen-Excess Ratio of Proton Exchange Membrane Fuel Cell Systems with Prescribed Performance

Author

Listed:
  • Van Du Phan

    (School of Mechanical Engineering, University of Ulsan, Ulsan 44610, Republic of Korea)

  • Hoai-An Trinh

    (School of Mechanical Engineering, University of Ulsan, Ulsan 44610, Republic of Korea)

  • Kyoung Kwan Ahn

    (School of Mechanical Engineering, University of Ulsan, Ulsan 44610, Republic of Korea)

Abstract

In recent years, proton exchange membrane fuel cell (PEMFC) has received growing attention as a new sustainable energy source because of its high-power density and zero-emission. In the PEMFC system, the air supply control has a significant impact on the efficiency and lifetime of the PEMFC stack. However, external disturbances and output constraints regularly have negative effects on air supply control. This paper aims to investigate a novel system analysis and advanced strategy control for the oxygen-excess ratio of a PEMFC system under the variant load current disturbance. The air-supply dynamic model is established which takes into account the supply manifolds, compressor, and the PEMFC stack. The proposed control method is designed based on finite-time command-filter control (FTCFC) to improve the tracking performance and ensure the finite-time convergence. Moreover, owing to the suggested prescribed performance function, the oxygen-excess ratio output remains in the pre-boundedness. Theoretical analysis exhibits that the closed-loop system stability is guaranteed by the Lyapunov theory. Finally, the simulation and hardware-in-loop (HIL) experiments are carried out on MATLAB environment and a 100 W power PEMFC system to validate the effectiveness of the suggested methodology.

Suggested Citation

  • Van Du Phan & Hoai-An Trinh & Kyoung Kwan Ahn, 2023. "Finite-Time Command Filtered Control for Oxygen-Excess Ratio of Proton Exchange Membrane Fuel Cell Systems with Prescribed Performance," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:914-:d:1064883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/914/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/914/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matraji, Imad & Laghrouche, Salah & Jemei, Samir & Wack, Maxime, 2013. "Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode," Applied Energy, Elsevier, vol. 104(C), pages 945-957.
    2. Mohamed Derbeli & Cristian Napole & Oscar Barambones, 2021. "Machine Learning Approach for Modeling and Control of a Commercial Heliocentris FC50 PEM Fuel Cell System," Mathematics, MDPI, vol. 9(17), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tri-Cuong Do & Hoai-An Trinh & Kyoung-Kwan Ahn, 2023. "Hierarchical Control Strategy with Battery Dynamic Consideration for a Dual Fuel Cell/Battery Tramway," Mathematics, MDPI, vol. 11(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    2. Aihua Tang & Lin Yang & Tao Zeng & Quanqing Yu, 2022. "Cascade Control Method of Sliding Mode and PID for PEMFC Air Supply System," Energies, MDPI, vol. 16(1), pages 1-13, December.
    3. Barzegari, Mohammad M. & Dardel, Morteza & Alizadeh, Ebrahim & Ramiar, Abas, 2016. "Dynamic modeling and validation studies of dead-end cascade H2/O2 PEM fuel cell stack with integrated humidifier and separator," Applied Energy, Elsevier, vol. 177(C), pages 298-308.
    4. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    5. Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2021. "Working zone for a least-squares support vector machine for modeling polymer electrolyte fuel cell voltage," Applied Energy, Elsevier, vol. 283(C).
    6. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    7. Bai, Fan & Quan, Hong-Bing & Yin, Ren-Jie & Zhang, Zhuo & Jin, Shu-Qi & He, Pu & Mu, Yu-Tong & Gong, Xiao-Ming & Tao, Wen-Quan, 2022. "Three-dimensional multi-field digital twin technology for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 324(C).
    8. Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    11. Gojmir Radica & Ivan Tolj & Mykhaylo V. Lototskyy & Sivakumar Pasupathi, 2023. "Air Mass Flow and Pressure Optimization of a PEM Fuel Cell Hybrid System for a Forklift Application," Energies, MDPI, vol. 17(1), pages 1-18, December.
    12. Ramos-Paja, Carlos Andrés & Spagnuolo, Giovanni & Petrone, Giovanni & Mamarelis, Emilio, 2014. "A perturbation strategy for fuel consumption minimization in polymer electrolyte membrane fuel cells: Analysis, Design and FPGA implementation," Applied Energy, Elsevier, vol. 119(C), pages 21-32.
    13. Fardila Mohd Zaihidee & Saad Mekhilef & Marizan Mubin, 2019. "Robust Speed Control of PMSM Using Sliding Mode Control (SMC)—A Review," Energies, MDPI, vol. 12(9), pages 1-27, May.
    14. Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
    15. Han, Jaeyoung & Yu, Sangseok & Yi, Sun, 2017. "Adaptive control for robust air flow management in an automotive fuel cell system," Applied Energy, Elsevier, vol. 190(C), pages 73-83.
    16. Bizon, Nicu, 2017. "Energy optimization of fuel cell system by using global extremum seeking algorithm," Applied Energy, Elsevier, vol. 206(C), pages 458-474.
    17. Liu, Zhao & Chen, Huicui & Peng, Lian & Ye, Xichen & Xu, Sichen & Zhang, Tong, 2022. "Feedforward-decoupled closed-loop fuzzy proportion-integral-derivative control of air supply system of proton exchange membrane fuel cell," Energy, Elsevier, vol. 240(C).
    18. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Xuan, Jin & Jiao, Kui, 2019. "A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems," Applied Energy, Elsevier, vol. 256(C).
    19. da Fonseca, R. & Bideaux, E. & Gerard, M. & Jeanneret, B. & Desbois-Renaudin, M. & Sari, A., 2014. "Control of PEMFC system air group using differential flatness approach: Validation by a dynamic fuel cell system model," Applied Energy, Elsevier, vol. 113(C), pages 219-229.
    20. Chen, Huicui & Liu, Zhao & Ye, Xichen & Yi, Liu & Xu, Sichen & Zhang, Tong, 2022. "Air flow and pressure optimization for air supply in proton exchange membrane fuel cell system," Energy, Elsevier, vol. 238(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:914-:d:1064883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.