IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i7p1022-d777237.html
   My bibliography  Save this article

A RUL Prediction Method of Small Sample Equipment Based on DCNN-BiLSTM and Domain Adaptation

Author

Listed:
  • Wenbai Chen

    (School of Automation, Beijing Information Science and Technology University, Beijing 100101, China)

  • Weizhao Chen

    (School of Automation, Beijing Information Science and Technology University, Beijing 100101, China)

  • Huixiang Liu

    (School of Automation, Beijing Information Science and Technology University, Beijing 100101, China)

  • Yiqun Wang

    (School of Automation, Beijing Information Science and Technology University, Beijing 100101, China)

  • Chunli Bi

    (China Academy of Information and Communications Technology, Beijing 100191, China)

  • Yu Gu

    (Guangdong Province Key Laboratory of Petrochemical Equipment Fault Diagnosis, Guangdong University of Petrochemical Technology, Maoming 525000, China
    College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
    Department of Chemistry, Institute of Inorganic and Analytical Chemistry, Goethe-University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany)

Abstract

To solve the problem of low accuracy of remaining useful life (RUL) prediction caused by insufficient sample data of equipment under complex operating conditions, an RUL prediction method of small sample equipment based on a deep convolutional neural network—bidirectional long short-term memory network (DCNN-BiLSTM) and domain adaptation is proposed. Firstly, in order to extract the common features of the equipment under the condition of sufficient samples, a network model that combines the deep convolutional neural network (DCNN) and the bidirectional long short-term memory network (BiLSTM) was used to train the source domain and target domain data simultaneously. The Maximum Mean Discrepancy (MMD) was used to constrain the distribution difference and achieve adaptive matching and feature alignment between the target domain samples and the source domain samples. After obtaining the pre-trained model, fine-tuning was used to transfer the network structure and parameters of the pre-trained model to the target domain for training, perform network optimization and finally obtain an RUL prediction model that was more suitable for the target domain data. The method was validated on a simulation dataset of commercial modular aero-propulsion provided by NASA, and the experimental results show that the method improves the prediction accuracy and generalization ability of equipment RUL under cross-working conditions and small sample conditions.

Suggested Citation

  • Wenbai Chen & Weizhao Chen & Huixiang Liu & Yiqun Wang & Chunli Bi & Yu Gu, 2022. "A RUL Prediction Method of Small Sample Equipment Based on DCNN-BiLSTM and Domain Adaptation," Mathematics, MDPI, vol. 10(7), pages 1-14, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1022-:d:777237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/7/1022/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/7/1022/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen Wenbai & Liu Chang & Chen Weizhao & Liu Huixiang & Chen Qili & Wu Peiliang & Long Wang, 2021. "A Prediction Method for the RUL of Equipment for Missing Data," Complexity, Hindawi, vol. 2021, pages 1-10, December.
    2. da Costa, Paulo Roberto de Oliveira & Akçay, Alp & Zhang, Yingqian & Kaymak, Uzay, 2020. "Remaining useful lifetime prediction via deep domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng Wang & Peng Gao & Xuening Chu, 2022. "Remaining Useful Life Prediction of Wind Turbine Gearbox Bearings with Limited Samples Based on Prior Knowledge and PI-LSTM," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    2. Guishuang Tian & Shaoping Wang & Jian Shi & Yajing Qiao, 2022. "State Estimation and Remaining Useful Life Prediction of PMSTM Based on a Combination of SIR and HSMM," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    3. Shaojie Ai & Jia Song & Guobiao Cai, 2022. "Sequence-to-Sequence Remaining Useful Life Prediction of the Highly Maneuverable Unmanned Aerial Vehicle: A Multilevel Fusion Transformer Network Solution," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    4. Weihua Ou & Jianping Gou & Shaoning Zeng & Lan Du, 2023. "Preface to the Special Issue “Advancement of Mathematical Methods in Feature Representation Learning for Artificial Intelligence, Data Mining and Robotics”—Special Issue Book," Mathematics, MDPI, vol. 11(4), pages 1-4, February.
    5. Khoa Tran & Hai-Canh Vu & Lam Pham & Nassim Boudaoud & Ho-Si-Hung Nguyen, 2024. "Robust-MBDL: A Robust Multi-Branch Deep-Learning-Based Model for Remaining Useful Life Prediction of Rotating Machines," Mathematics, MDPI, vol. 12(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Li, Wanxiang & Shang, Zhiwu & Gao, Maosheng & Qian, Shiqi & Feng, Zehua, 2022. "Remaining useful life prediction based on transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    8. Bae, Jinwoo & Xi, Zhimin, 2022. "Learning of physical health timestep using the LSTM network for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang, 2022. "The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Zhang, Wei & Li, Xiang & Ma, Hui & Luo, Zhong & Li, Xu, 2021. "Transfer learning using deep representation regularization in remaining useful life prediction across operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    12. Fallahdizcheh, Amirhossein & Wang, Chao, 2022. "Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    13. Li, Zhanhang & Zhou, Jian & Nassif, Hani & Coit, David & Bae, Jinwoo, 2023. "Fusing physics-inferred information from stochastic model with machine learning approaches for degradation prediction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    14. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Theissler, Andreas & Pérez-Velázquez, Judith & Kettelgerdes, Marcel & Elger, Gordon, 2021. "Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Zhang, Jiusi & Tian, Jilun & Yan, Pengfei & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "Multi-hop graph pooling adversarial network for cross-domain remaining useful life prediction: A distributed federated learning perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    17. Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Chen, Jiaxian & Li, Dongpeng & Huang, Ruyi & Chen, Zhuyun & Li, Weihua, 2023. "Aero-engine remaining useful life prediction method with self-adaptive multimodal data fusion and cluster-ensemble transfer regression," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Nejjar, Ismail & Geissmann, Fabian & Zhao, Mengjie & Taal, Cees & Fink, Olga, 2024. "Domain adaptation via alignment of operation profile for Remaining Useful Lifetime prediction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1022-:d:777237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.