IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12094-d924183.html
   My bibliography  Save this article

Remaining Useful Life Prediction of Wind Turbine Gearbox Bearings with Limited Samples Based on Prior Knowledge and PI-LSTM

Author

Listed:
  • Zheng Wang

    (School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Peng Gao

    (School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Xuening Chu

    (School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

Abstract

Accurately predicting the remaining useful life of wind turbine gearbox bearing online is essential for ensuring the safe operation of the whole machine in the long run. In recent years, quite a few data-driven approaches have been proposed that use the sensor-collected data to deal with this problem, achieving good results. However, their effects are heavily dependent on the massive degradation data due to the nature of data-driven methods. In practice, the complete data collection is expensive and time-consuming, especially for newly built or small-scale wind farms, which brings the problem of using limited data into sharp focus. To this end, in this paper, a novel idea of first using the prior knowledge of an empirical model for data augmentation based on the raw limited samples and then using the deep neural network to learn from the augmented data is proposed. This helps the neural network to safely approach the degradation characteristics, avoiding overfitting. In addition, a new neural network, namely, pre-interaction long short-term memory (PI-LSTM), is designed, which is able to better capture the sequential features of time-series samples, especially in the periods in which the continuous features are interrupted. Finally, a fine-tuning process is conducted using the limited real data for eliminating the introduced knowledge bias. Through a case study based on real sensor data, both the idea and the PI-LSTM are proved to be effective and superior to the state-of-art.

Suggested Citation

  • Zheng Wang & Peng Gao & Xuening Chu, 2022. "Remaining Useful Life Prediction of Wind Turbine Gearbox Bearings with Limited Samples Based on Prior Knowledge and PI-LSTM," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12094-:d:924183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Teng & Xiaolong Zhang & Yibing Liu & Andrew Kusiak & Zhiyong Ma, 2016. "Prognosis of the Remaining Useful Life of Bearings in a Wind Turbine Gearbox," Energies, MDPI, vol. 10(1), pages 1-16, December.
    2. Hu, Yaogang & Li, Hui & Shi, Pingping & Chai, Zhaosen & Wang, Kun & Xie, Xiangjie & Chen, Zhe, 2018. "A prediction method for the real-time remaining useful life of wind turbine bearings based on the Wiener process," Renewable Energy, Elsevier, vol. 127(C), pages 452-460.
    3. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    4. Wang, Jinjiang & Liang, Yuanyuan & Zheng, Yinghao & Gao, Robert X. & Zhang, Fengli, 2020. "An integrated fault diagnosis and prognosis approach for predictive maintenance of wind turbine bearing with limited samples," Renewable Energy, Elsevier, vol. 145(C), pages 642-650.
    5. Wenbai Chen & Weizhao Chen & Huixiang Liu & Yiqun Wang & Chunli Bi & Yu Gu, 2022. "A RUL Prediction Method of Small Sample Equipment Based on DCNN-BiLSTM and Domain Adaptation," Mathematics, MDPI, vol. 10(7), pages 1-14, March.
    6. Xiaocong Xiao & Jianxun Liu & Deshun Liu & Yufei Tang & Fan Zhang, 2022. "Condition Monitoring of Wind Turbine Main Bearing Based on Multivariate Time Series Forecasting," Energies, MDPI, vol. 15(5), pages 1-23, March.
    7. Liao, Guobo & Yin, Hongpeng & Chen, Min & Lin, Zheng, 2021. "Remaining useful life prediction for multi-phase deteriorating process based on Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Chang, Yang & Fang, Huajing, 2019. "A hybrid prognostic method for system degradation based on particle filter and relevance vector machine," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 51-63.
    5. Yu, Wennian & Shao, Yimin & Xu, Jin & Mechefske, Chris, 2022. "An adaptive and generalized Wiener process model with a recursive filtering algorithm for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Chen, Jinglong & Jing, Hongjie & Chang, Yuanhong & Liu, Qian, 2019. "Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 372-382.
    7. Pan, Yubin & Hong, Rongjing & Chen, Jie & Wu, Weiwei, 2020. "A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox," Renewable Energy, Elsevier, vol. 152(C), pages 138-154.
    8. Ravi Kumar Pandit & Davide Astolfi & Isidro Durazo Cardenas, 2023. "A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines," Energies, MDPI, vol. 16(4), pages 1-17, February.
    9. Pedersen, Tom Ivar & Liu, Xingheng & Vatn, Jørn, 2023. "Maintenance optimization of a system subject to two-stage degradation, hard failure, and imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    11. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).
    14. Sun, Fuqiang & Fu, Fangyou & Liao, Haitao & Xu, Dan, 2020. "Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    15. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    16. Bahareh Tajiani & Jørn Vatn, 2023. "Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1756-1777, October.
    17. Xu, Xuefang & Li, Bo & Qiao, Zijian & Shi, Peiming & Shao, Huaishuang & Li, Ruixiong, 2023. "Caputo-Fabrizio fractional order derivative stochastic resonance enhanced by ADOF and its application in fault diagnosis of wind turbine drivetrain," Renewable Energy, Elsevier, vol. 219(P1).
    18. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    19. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12094-:d:924183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.