IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006343.html
   My bibliography  Save this article

Prediction model optimization of gas turbine remaining useful life based on transfer learning and simultaneous distillation pruning algorithm

Author

Listed:
  • Zheng, Yu
  • Chen, Liang
  • Bao, Xiangyu
  • Zhao, Fei
  • Zhong, Jingshu
  • Wang, Chenhan

Abstract

For the application of deep learning (DL) models in the field of remaining useful life (RUL) prediction and predictive maintenance (PdM) of complex equipment, the insufficient training data and large model are the two major problems. To address these issues, a model training method based on transfer learning and a simultaneous distillation pruning algorithm were proposed. By introducing prior knowledge, three transfer learning modes are devised to reduce the demand of training data. Additionally, the simultaneous distillation pruning algorithm was devised to make the model lightweight, and an iterative pruning method was adopted to trim the large neural network model. By analyzing the performance of different transfer learning modes, the effectiveness of the proposed method can be demonstrated. The number of model parameters and the performance before and after pruning were compared. The results demonstrated that, without significant alterations to the prediction performance, the proposed model exhibited the capability to markedly reduce the number of model parameters. Based on the proposed methods, the challenges of insufficient data and efficiency encountered by DL models could be effectively addressed.

Suggested Citation

  • Zheng, Yu & Chen, Liang & Bao, Xiangyu & Zhao, Fei & Zhong, Jingshu & Wang, Chenhan, 2025. "Prediction model optimization of gas turbine remaining useful life based on transfer learning and simultaneous distillation pruning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006343
    DOI: 10.1016/j.ress.2024.110562
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yajing & Wang, Zhijian & Li, Feng & Li, Yanfeng & Zhang, Xiaohong & Shi, Hui & Dong, Lei & Ren, Weibo, 2024. "An ensembled remaining useful life prediction method with data fusion and stage division," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Shi, Jiayu & Zhong, Jingshu & Zhang, Yuxuan & Xiao, Bin & Xiao, Lei & Zheng, Yu, 2024. "A dual attention LSTM lightweight model based on exponential smoothing for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Ding, Yifei & Jia, Minping & Miao, Qiuhua & Huang, Peng, 2021. "Remaining useful life estimation using deep metric transfer learning for kernel regression," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Hu, Tao & Guo, Yiming & Gu, Liudong & Zhou, Yifan & Zhang, Zhisheng & Zhou, Zhiting, 2022. "Remaining useful life prediction of bearings under different working conditions using a deep feature disentanglement based transfer learning method," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Zhang, Yadong & Zhang, Chao & Wang, Shaoping & Dui, Hongyan & Chen, Rentong, 2024. "Health indicators for remaining useful life prediction of complex systems based on long short-term memory network and improved particle filter," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Luo, Hao & Yin, Shen, 2023. "An integrated multi-head dual sparse self-attention network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    7. Chen, Jiaxian & Li, Dongpeng & Huang, Ruyi & Chen, Zhuyun & Li, Weihua, 2023. "Aero-engine remaining useful life prediction method with self-adaptive multimodal data fusion and cluster-ensemble transfer regression," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Ding, Wanmeng & Li, Jimeng & Mao, Weilin & Meng, Zong & Shen, Zhongjie, 2023. "Rolling bearing remaining useful life prediction based on dilated causal convolutional DenseNet and an exponential model," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    10. Zhang, Huixin & Xi, Xiaopeng & Pan, Rong, 2023. "A two-stage data-driven approach to remaining useful life prediction via long short-term memory networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Keshun, You & Guangqi, Qiu & Yingkui, Gu, 2024. "Optimizing prior distribution parameters for probabilistic prediction of remaining useful life using deep learning," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. da Costa, Paulo Roberto de Oliveira & Akçay, Alp & Zhang, Yingqian & Kaymak, Uzay, 2020. "Remaining useful lifetime prediction via deep domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jing & Wang, Xiaomin, 2024. "Meta-learning with deep flow kernel network for few shot cross-domain remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Fu, En & Hu, Yanyan & Peng, Kaixiang & Chu, Yuxin, 2024. "Supervised contrastive learning based dual-mixer model for Remaining Useful Life prediction," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Yan, Jianhai & Ye, Zhi-Sheng & He, Shuguang & He, Zhen, 2024. "A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Zhu, Ting & Chen, Zhen & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2024. "Adaptive staged remaining useful life prediction of roller in a hot strip mill based on multi-scale LSTM with multi-head attention," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Wu, Jinxin & He, Deqiang & Li, Jiayi & Miao, Jian & Li, Xianwang & Li, Hongwei & Shan, Sheng, 2024. "Temporal multi-resolution hypergraph attention network for remaining useful life prediction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    6. Hu, Tao & Guo, Yiming & Gu, Liudong & Zhou, Yifan & Zhang, Zhisheng & Zhou, Zhiting, 2022. "Remaining useful life estimation of bearings under different working conditions via Wasserstein distance-based weighted domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    7. Li, Xuanlin & Hu, Yawei & Wang, Hang & Liu, Yongbin & Liu, Xianzeng & Lu, Huitian, 2025. "A closed-form continuous-depth neural-based hybrid difference features re-representation network for RUL prediction," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    8. Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Zhan, Yuling & Kong, Ziqian & Wang, Ziqi & Jin, Xiaohang & Xu, Zhengguo, 2024. "Remaining useful life prediction with uncertainty quantification based on multi-distribution fusion structure," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    10. Yan, Jianhai & He, Zhen & He, Shuguang, 2023. "Multitask learning of health state assessment and remaining useful life prediction for sensor-equipped machines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    11. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang, 2022. "The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Wang, Wei & Song, Honghao & Si, Shubin & Lu, Wenhao & Cai, Zhiqiang, 2024. "Data augmentation based on diffusion probabilistic model for remaining useful life estimation of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    13. Nejjar, Ismail & Geissmann, Fabian & Zhao, Mengjie & Taal, Cees & Fink, Olga, 2024. "Domain adaptation via alignment of operation profile for Remaining Useful Lifetime prediction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Wang, Han & Wang, Dongdong & Liu, Haoxiang & Tang, Gang, 2022. "A predictive sliding local outlier correction method with adaptive state change rate determining for bearing remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Ren, Xiangyu & Qin, Yong & Li, Bin & Wang, Biao & Yi, Xiaojian & Jia, Limin, 2024. "A core space gradient projection-based continual learning framework for remaining useful life prediction of machinery under variable operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    16. Cui, Lingli & Shen, Qiang & Xiao, Yongchang & Liu, Dongdong & Wang, Huaqing, 2025. "Sparse graph structure fusion convolutional network for machinery remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    17. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    18. Chen, Dingliang & Cai, Wei & Yu, Hangjun & Wu, Fei & Qin, Yi, 2023. "A novel transfer gear life prediction method by the cross-condition health indicator and nested hierarchical binary-valued network," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Zhuang, Jichao & Jia, Minping & Zhao, Xiaoli, 2022. "An adversarial transfer network with supervised metric for remaining useful life prediction of rolling bearing under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    20. Han, Yan & Hu, Ailin & Huang, Qingqing & Zhang, Yan & Lin, Zhichao & Ma, Jinghua, 2025. "Sinkhorn divergence-based contrast domain adaptation for remaining useful life prediction of rolling bearings under multiple operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.