IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16810-d1003811.html
   My bibliography  Save this article

State Estimation and Remaining Useful Life Prediction of PMSTM Based on a Combination of SIR and HSMM

Author

Listed:
  • Guishuang Tian

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China)

  • Shaoping Wang

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
    Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China
    Ningbo Institute of Technology, Beihang University, Ningbo 315800, China)

  • Jian Shi

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
    Science and Technology on Aircraft Control Laboratory, Beihang University, Beijing 100191, China
    Ningbo Institute of Technology, Beihang University, Ningbo 315800, China)

  • Yajing Qiao

    (School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China)

Abstract

The permanent magnet synchronous traction motor (PMSTM) is the core equipment of urban rail transit. If a PMSTM fails, it will cause serious economic losses and casualties. It is essential to estimate the current health state and predict remaining useful life (RUL) for PMSTMs. Directly obtaining the internal representation of a PMSTM is known to be difficult, and PMSTMs have long service lives. In order to address these drawbacks, a combination of SIR and HSMM based state estimation and RUL prediction method is introduced with the multi-parameter fusion health index (MFHI) as the performance indicator. The proposed method’s advantages over the conventional HSMM method were verified through simulation research and examples. The results show that the proposed state estimation method has small error distribution results, and the RUL prediction method can obtain accurate results. The findings of this study demonstrate that the proposed method may serve as a new and effective technique to estimate a PMSTM’s health state and RUL.

Suggested Citation

  • Guishuang Tian & Shaoping Wang & Jian Shi & Yajing Qiao, 2022. "State Estimation and Remaining Useful Life Prediction of PMSTM Based on a Combination of SIR and HSMM," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16810-:d:1003811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16810/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16810/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tanvir Alam Shifat & Rubiya Yasmin & Jang-Wook Hur, 2021. "A Data Driven RUL Estimation Framework of Electric Motor Using Deep Electrical Feature Learning from Current Harmonics and Apparent Power," Energies, MDPI, vol. 14(11), pages 1-21, May.
    2. Hu, Zhen & Mahadevan, Sankaran, 2019. "Probability models for data-Driven global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 40-57.
    3. Ahmad, Wasim & Khan, Sheraz Ali & Islam, M M Manjurul & Kim, Jong-Myon, 2019. "A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 67-76.
    4. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    5. Downey, Austin & Lui, Yu-Hui & Hu, Chao & Laflamme, Simon & Hu, Shan, 2019. "Physics-based prognostics of lithium-ion battery using non-linear least squares with dynamic bounds," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 1-12.
    6. García Nieto, P.J. & García-Gonzalo, E. & Sánchez Lasheras, F. & de Cos Juez, F.J., 2015. "Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft engines and evaluation of its reliability," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 219-231.
    7. Wenbai Chen & Weizhao Chen & Huixiang Liu & Yiqun Wang & Chunli Bi & Yu Gu, 2022. "A RUL Prediction Method of Small Sample Equipment Based on DCNN-BiLSTM and Domain Adaptation," Mathematics, MDPI, vol. 10(7), pages 1-14, March.
    8. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
    9. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    10. Liu, Junqiang & Lei, Fan & Pan, Chunlu & Hu, Dongbin & Zuo, Hongfu, 2021. "Prediction of remaining useful life of multi-stage aero-engine based on clustering and LSTM fusion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Małgorzata Jasiulewicz-Kaczmarek & Katarzyna Antosz & Chao Zhang & Vitalii Ivanov, 2023. "Industry 4.0 Technologies for Sustainable Asset Life Cycle Management," Sustainability, MDPI, vol. 15(7), pages 1-7, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Xiang, Sheng & Qin, Yi & Luo, Jun & Pu, Huayan & Tang, Baoping, 2021. "Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    5. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Liu, Yunpeng & Hou, Bo & Ahmed, Moin & Mao, Zhiyu & Feng, Jiangtao & Chen, Zhongwei, 2024. "A hybrid deep learning approach for remaining useful life prediction of lithium-ion batteries based on discharging fragments," Applied Energy, Elsevier, vol. 358(C).
    8. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    9. Xu, Dan & Xiao, Xiaoqi & Liu, Jie & Sui, Shaobo, 2023. "Spatio-temporal degradation modeling and remaining useful life prediction under multiple operating conditions based on attention mechanism and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    11. Huang, Zhifu & Yang, Yang & Hu, Yawei & Ding, Xiang & Li, Xuanlin & Liu, Yongbin, 2023. "Attention-augmented recalibrated and compensatory network for machine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Chen, Jiaxian & Li, Dongpeng & Huang, Ruyi & Chen, Zhuyun & Li, Weihua, 2023. "Aero-engine remaining useful life prediction method with self-adaptive multimodal data fusion and cluster-ensemble transfer regression," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Mariusz Zieja & Andrzej Gębura & Andrzej Szelmanowski & Bartłomiej Główczyk, 2021. "Non-Invasive Monitoring of the Technical Condition of Power Units Using the FAM-C and FDM-A Electrical Methods," Sustainability, MDPI, vol. 13(23), pages 1-19, December.
    14. Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Li, Xiang & Luo, Hao & Yin, Shen, 2022. "Prediction of remaining useful life based on bidirectional gated recurrent unit with temporal self-attention mechanism," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    15. Liu, Junqiang & Yu, Zhuoqian & Zuo, Hongfu & Fu, Rongchunxue & Feng, Xiaonan, 2022. "Multi-stage residual life prediction of aero-engine based on real-time clustering and combined prediction model," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    16. González-Muñiz, Ana & Díaz, Ignacio & Cuadrado, Abel A. & García-Pérez, Diego, 2022. "Health indicator for machine condition monitoring built in the latent space of a deep autoencoder," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    17. Miao, Mengqi & Yu, Jianbo & Zhao, Zhihong, 2022. "A sparse domain adaption network for remaining useful life prediction of rolling bearings under different working conditions," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    18. He, Yuxuan & Su, Huai & Zio, Enrico & Peng, Shiliang & Fan, Lin & Yang, Zhaoming & Yang, Zhe & Zhang, Jinjun, 2023. "A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Dong, Zhe & Li, Bowen & Li, Junyi & Huang, Xiaojin & Zhang, Zuoyi, 2022. "Online reliability assessment of energy systems based on a high-order extended-state-observer with application to nuclear reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    20. Fan, Yuantao & Nowaczyk, Sławomir & Rögnvaldsson, Thorsteinn, 2020. "Transfer learning for remaining useful life prediction based on consensus self-organizing models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16810-:d:1003811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.