IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i16p2984-d892017.html
   My bibliography  Save this article

Irreversibility Analysis in the Ethylene Glycol Based Hybrid Nanofluid Flow amongst Expanding/Contracting Walls When Quadratic Thermal Radiation and Arrhenius Activation Energy Are Significant

Author

Listed:
  • Bommana Lavanya

    (Department of Mathematics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
    These authors contributed equally to this work and are co-first authors.)

  • Jorige Girish Kumar

    (Department of Mathematics, S.V.A. Government College, Srikalahasti 517644, Andhra, India)

  • Macherla Jayachandra Babu

    (Department of Mathematics, S.V.A. Government College, Srikalahasti 517644, Andhra, India)

  • Chakravarthula Sivakrishnam Raju

    (Department of Mathematics, GITAM School of Science, GITAM University, Bangalore Campus, Bangalore 562163, Karnataka, India
    School of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea)

  • Nehad Ali Shah

    (Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea
    These authors contributed equally to this work and are co-first authors.)

  • Prem Junsawang

    (Department of Statistics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand)

Abstract

In this new era of the fluid field, researchers are interested in hybrid nanofluids because of their thermal properties and potential, which are better than those of nanofluids when it comes to increasing the rate at which heat is transferred. Compared to the dynamics of radiative Ethylene Glycol-Zinc Oxide (nanofluid) and Ethylene Glycol-Zinc Oxide-Titanium Dioxide (hybrid nanofluid) flows between two permeable expanding/contracting walls, nothing is known in terms of Lorentz force, heat source, and the activation energy. The thermo-physical characteristics of Ethylene Glycol, Zinc Oxide nanoparticles, and Titanium Dioxide nanoparticles are used in this study to derive the governing equations for the transport of both dynamics. Governing equations are converted as a set of nonlinear ordinary differential equations (with the aid of suitable similarity mutations), and then the MATLAB bvp4c solver is used to solve the equations. This study’s significant findings are that rise in the reaction rate constant increases mass transfer rate, whereas an increase in the activation energy parameter decreases it. The mass transfer rate decreases at a rate of 0.04669 (in the case of hybrid nanofluid) and 0.04721 (in the case of nanofluid) when activation energy ( E ) takes input in the range 0 ≤ E ≤ 5 . It has been noticed that the velocity profiles are greater when the walls are expanding as opposed to when they are contracting. It is detected that the heat transfer rate reduces as the heat source parameter increases. The heat transfer rate drops at a rate of 0.9734 (in the case of hybrid Nanofluid) and 0.97925 (in the case of nanofluid) when the heat source parameter ( Q ) takes input in the range 0 ≤ Q ≤ 0.3 . In addition, it has been observed that the entropy generation increases as the Brinkmann number rises.

Suggested Citation

  • Bommana Lavanya & Jorige Girish Kumar & Macherla Jayachandra Babu & Chakravarthula Sivakrishnam Raju & Nehad Ali Shah & Prem Junsawang, 2022. "Irreversibility Analysis in the Ethylene Glycol Based Hybrid Nanofluid Flow amongst Expanding/Contracting Walls When Quadratic Thermal Radiation and Arrhenius Activation Energy Are Significant," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2984-:d:892017
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/16/2984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/16/2984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nidal H. Abu-Hamdeh & Radi A. Alsulami & Muhyaddin J. H. Rawa & Mashhour A. Alazwari & Marjan Goodarzi & Mohammad Reza Safaei, 2021. "A Significant Solar Energy Note on Powell-Eyring Nanofluid with Thermal Jump Conditions: Implementing Cattaneo-Christov Heat Flux Model," Mathematics, MDPI, vol. 9(21), pages 1-16, October.
    2. Umair Khan & Iskandar Waini & Aurang Zaib & Anuar Ishak & Ioan Pop, 2022. "MHD Mixed Convection Hybrid Nanofluids Flow over a Permeable Moving Inclined Flat Plate in the Presence of Thermophoretic and Radiative Heat Flux Effects," Mathematics, MDPI, vol. 10(7), pages 1-21, April.
    3. Ruhani, Behrooz & Barnoon, Pouya & Toghraie, Davood, 2019. "Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 616-627.
    4. Muhammad Zeeshan Ashraf & Saif Ur Rehman & Saadia Farid & Ahmed Kadhim Hussein & Bagh Ali & Nehad Ali Shah & Wajaree Weera, 2022. "Insight into Significance of Bioconvection on MHD Tangent Hyperbolic Nanofluid Flow of Irregular Thickness across a Slender Elastic Surface," Mathematics, MDPI, vol. 10(15), pages 1-17, July.
    5. Nur Syazana Anuar & Norfifah Bachok & Ioan Pop, 2021. "Numerical Computation of Dusty Hybrid Nanofluid Flow and Heat Transfer over a Deformable Sheet with Slip Effect," Mathematics, MDPI, vol. 9(6), pages 1-18, March.
    6. Mashhour A. Alazwari & Nidal H. Abu-Hamdeh & Marjan Goodarzi, 2021. "Entropy Optimization of First-Grade Viscoelastic Nanofluid Flow over a Stretching Sheet by Using Classical Keller-Box Scheme," Mathematics, MDPI, vol. 9(20), pages 1-22, October.
    7. Shahirah Abu Bakar & Norihan Md Arifin & Najiyah Safwa Khashi’ie & Norfifah Bachok, 2021. "Hybrid Nanofluid Flow over a Permeable Shrinking Sheet Embedded in a Porous Medium with Radiation and Slip Impacts," Mathematics, MDPI, vol. 9(8), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Talebizadehsardari, Pouyan & Shahsavar, Amin & Toghraie, Davood & Barnoon, Pouya, 2019. "An experimental investigation for study the rheological behavior of water–carbon nanotube/magnetite nanofluid subjected to a magnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Ahmed, Waqar & Kazi, S.N. & Chowdhury, Z.Z. & Johan, Mohd Rafie Bin & Mehmood, Shahid & Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Gul, M. & Ahmad, Muhammad Shakeel, 2021. "Heat transfer growth of sonochemically synthesized novel mixed metal oxide ZnO+Al2O3+TiO2/DW based ternary hybrid nanofluids in a square flow conduit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung, 2023. "Role of Nanofluid and Hybrid Nanofluid for Enhancing Thermal Conductivity towards Exponentially Stretching Curve with Modified Fourier Law Inspired by Melting Heat Effect," Mathematics, MDPI, vol. 11(5), pages 1-21, February.
    4. Amzad Hossain & Md. Mamun Molla & Md. Kamrujjaman & Muhammad Mohebujjaman & Suvash C. Saha, 2023. "MHD Mixed Convection of Non-Newtonian Bingham Nanofluid in a Wavy Enclosure with Temperature-Dependent Thermophysical Properties: A Sensitivity Analysis by Response Surface Methodology," Energies, MDPI, vol. 16(11), pages 1-39, May.
    5. Zeeshan & N. Ameer Ahammad & Haroon Ur Rasheed & Ahmed A. El-Deeb & Barakah Almarri & Nehad Ali Shah, 2022. "A Numerical Intuition of Activation Energy in Transient Micropolar Nanofluid Flow Configured by an Exponentially Extended Plat Surface with Thermal Radiation Effects," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    6. Meznah M. Alanazi & Awatif A. Hendi & Qadeer Raza & M. Zubair Akbar Qureshi & Fatima Shafiq Hira & Bagh Ali & Nehad Ali Shah & Jae Dong Chung, 2022. "Significance of Multi-Hybrid Morphology Nanoparticles on the Dynamics of Water Fluid Subject to Thermal and Viscous Joule Performance," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
    7. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Attaullah & Haroon Ur Rasheed, 2023. "Analysis of Error and Stability of Nanofluid over Horizontal Channel with Heat/Mass Transfer and Nonlinear Thermal Conductivity," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    8. M. Zubair Akbar Qureshi & Qadeer Raza & Aroosa Ramzan & M. Faisal & Bagh Ali & Nehad Ali Shah & Wajaree Weera, 2022. "Activation Energy Performance through Magnetized Hybrid Fe 3 O 4 – PP Nanofluids Flow with Impact of the Cluster Interfacial Nanolayer," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    9. Rostami, Sara & Ahmadi-Danesh-Ashtiani, Hossein & Toghraie, Davood & Fazaeli, Reza, 2020. "A statistical method for simulation of boiling flow inside a Platinum microchannel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    10. Bilal Ahmad & Muhammad Ozair Ahmad & Liaqat Ali & Bagh Ali & Ahmed Kadhim Hussein & Nehad Ali Shah & Jae Dong Chung, 2022. "Significance of the Coriolis Force on the Dynamics of Carreau–Yasuda Rotating Nanofluid Subject to Darcy–Forchheimer and Gyrotactic Microorganisms," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    11. Syed Muhammad Ali Haider & Bagh Ali & Qiuwang Wang & Cunlu Zhao, 2022. "Rotating Flow and Heat Transfer of Single-Wall Carbon Nanotube and Multi-Wall Carbon Nanotube Hybrid Nanofluid with Base Fluid Water over a Stretching Sheet," Energies, MDPI, vol. 15(16), pages 1-13, August.
    12. Sivasankaran Sivanandam & Fouad O. M. Mallawi, 2022. "Effects of Variable Properties on the Convective Flow of Water near Its Density Extremum in an Inclined Enclosure with Entropy Generation," Mathematics, MDPI, vol. 10(19), pages 1-20, September.
    13. Qadeer Raza & M. Zubair Akbar Qureshi & Bagh Ali & Ahmed Kadhim Hussein & Behzad Ali Khan & Nehad Ali Shah & Wajaree Weera, 2022. "Morphology of Hybrid MHD Nanofluid Flow through Orthogonal Coaxial Porous Disks," Mathematics, MDPI, vol. 10(18), pages 1-18, September.
    14. Pirmoradian, Mostafa & Torkan, Ehsan & Zali, Hamid & Hashemian, Mohammad & Toghraie, Davood, 2020. "Statistical and parametric instability analysis for delivery of nanoparticles through embedded DWCNT," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    15. Hatem Gasmi & Umair Khan & Aurang Zaib & Anuar Ishak & Sayed M. Eldin & Zehba Raizah, 2022. "Analysis of Mixed Convection on Two-Phase Nanofluid Flow Past a Vertical Plate in Brinkman-Extended Darcy Porous Medium with Nield Conditions," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    16. Halavudara Basavarajappa Santhosh & Mamatha Sadananda Upadhya & N. Ameer Ahammad & Chakravarthula Siva Krishnam Raju & Nehad Ali Shah & Wajaree Weera, 2022. "Comparative Analysis of a Cone, Wedge, and Plate Packed with Microbes in Non-Fourier Heat Flux," Mathematics, MDPI, vol. 10(19), pages 1-18, September.
    17. Syafiq Zainodin & Anuar Jamaludin & Roslinda Nazar & Ioan Pop, 2022. "MHD Mixed Convection of Hybrid Ferrofluid Flow over an Exponentially Stretching/Shrinking Surface with Heat Source/Sink and Velocity Slip," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    18. Abdul Manan & Saif Ur Rehman & Nageen Fatima & Muhammad Imran & Bagh Ali & Nehad Ali Shah & Jae Dong Chung, 2022. "Dynamics of Eyring–Powell Nanofluids When Bioconvection and Lorentz Forces Are Significant: The Case of a Slender Elastic Sheet of Variable Thickness with Porous Medium," Mathematics, MDPI, vol. 10(17), pages 1-20, August.
    19. Jourabian, Mahmoud & Rabienataj Darzi, A. Ali & Akbari, Omid Ali & Toghraie, Davood, 2020. "The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    20. Aleksandr Shirokanev & Nataly Ilyasova & Nikita Andriyanov & Evgeniy Zamytskiy & Andrey Zolotarev & Dmitriy Kirsh, 2021. "Modeling of Fundus Laser Exposure for Estimating Safe Laser Coagulation Parameters in the Treatment of Diabetic Retinopathy," Mathematics, MDPI, vol. 9(9), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2984-:d:892017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.