IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3280-d911392.html
   My bibliography  Save this article

Morphology of Hybrid MHD Nanofluid Flow through Orthogonal Coaxial Porous Disks

Author

Listed:
  • Qadeer Raza

    (Department of Mathematics, Multan Campus, AIR University, Multan 49501, Pakistan
    These authors contributed equally to this work and are co-first authors.)

  • M. Zubair Akbar Qureshi

    (Department of Mathematics, Multan Campus, AIR University, Multan 49501, Pakistan)

  • Bagh Ali

    (Faculty of Computer Science and Information Technology, Superior University, Lahore 54000, Pakistan)

  • Ahmed Kadhim Hussein

    (Mechanical Engineering Department, College of Engineering, University of Babylon, Hilla 00964, Iraq
    College of Engineering, University of Warith Al-Anbiyaa, Karbala 56001, Iraq)

  • Behzad Ali Khan

    (Department of Mathematics, Multan Campus, AIR University, Multan 49501, Pakistan)

  • Nehad Ali Shah

    (Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea
    These authors contributed equally to this work and are co-first authors.)

  • Wajaree Weera

    (Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand)

Abstract

In this article, we study the novel features of morphological effects for hybrid nanofluid flow subject to expanding/contracting geometry. The nanoparticles are incorporated due to their extraordinary thermal conductivity and innovative work for hybrid nanofluids, which are assembled of aluminum oxides, Al 2 O 3 metallic oxides, and metallic copper Cu. Cu nanoparticles demonstrate very strong catalytic activity, while Al 2 O 3 nanoparticles perform well as an electrical insulator. The governing partial differential equations of the elaborated model are transformed into a system of nonlinear ordinary differential equations with the use of similarity variables, and these equations are numerically solved through a shooting technique based on the Runge–Kutta method. We develop a hybrid correlation for thermophysical properties based on a single-phase approach. A favorable comparison between shape and size factors for metallic and metallic-oxide nanoparticles is discussed via tables and figures. Moreover, the effect of embedding flow factors on concentration, velocity, and temperature is shaped in line with parametric studies, such as the permeable Reynolds number, nanoparticle volume fractions, and expansion/contraction parameters. The fluid velocity, temperature, and concentration are demonstrated in the presence of hybrid nanoparticles and are discussed in detail, while physical parameters such as the shear stress, flow of heat, and mass transfer at the lower and upper disks are demonstrated in a table. The hybrid nanoparticles show significant results as compared to the nanofluids. If we increase the nanoparticle volume fraction, this increases the thermal performance for an injection/suction case as well. The above collaborative research provides a strong foundation in the field of biomedical equipment and for the development of nanotechnology-oriented computers.

Suggested Citation

  • Qadeer Raza & M. Zubair Akbar Qureshi & Bagh Ali & Ahmed Kadhim Hussein & Behzad Ali Khan & Nehad Ali Shah & Wajaree Weera, 2022. "Morphology of Hybrid MHD Nanofluid Flow through Orthogonal Coaxial Porous Disks," Mathematics, MDPI, vol. 10(18), pages 1-18, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3280-:d:911392
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3280/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3280/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quanfu Lou & Bagh Ali & Saif Ur Rehman & Danial Habib & Sohaib Abdal & Nehad Ali Shah & Jae Dong Chung, 2022. "Micropolar Dusty Fluid: Coriolis Force Effects on Dynamics of MHD Rotating Fluid When Lorentz Force Is Significant," Mathematics, MDPI, vol. 10(15), pages 1-13, July.
    2. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    3. Muhammad Ashraf & S. Asghar & Md. Anwar Hossain, 2010. "Thermal Radiation Effects on Hydromagnetic Mixed Convection Flow along a Magnetized Vertical Porous Plate," Mathematical Problems in Engineering, Hindawi, vol. 2010, pages 1-30, February.
    4. Muhammad Zeeshan Ashraf & Saif Ur Rehman & Saadia Farid & Ahmed Kadhim Hussein & Bagh Ali & Nehad Ali Shah & Wajaree Weera, 2022. "Insight into Significance of Bioconvection on MHD Tangent Hyperbolic Nanofluid Flow of Irregular Thickness across a Slender Elastic Surface," Mathematics, MDPI, vol. 10(15), pages 1-17, July.
    5. Qadeer Raza & M. Zubair Akbar Qureshi & Behzad Ali Khan & Ahmed Kadhim Hussein & Bagh Ali & Nehad Ali Shah & Jae Dong Chung, 2022. "Insight into Dynamic of Mono and Hybrid Nanofluids Subject to Binary Chemical Reaction, Activation Energy, and Magnetic Field through the Porous Surfaces," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meznah M. Alanazi & Awatif A. Hendi & Qadeer Raza & M. Zubair Akbar Qureshi & Fatima Shafiq Hira & Bagh Ali & Nehad Ali Shah & Jae Dong Chung, 2022. "Significance of Multi-Hybrid Morphology Nanoparticles on the Dynamics of Water Fluid Subject to Thermal and Viscous Joule Performance," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
    2. Fatemah Alsebai & Fatemah H. H. Al Mukahal & Mohammed Sobhy, 2022. "Semi-Analytical Solution for Thermo-Piezoelectric Bending of FG Porous Plates Reinforced with Graphene Platelets," Mathematics, MDPI, vol. 10(21), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeeshan & N. Ameer Ahammad & Haroon Ur Rasheed & Ahmed A. El-Deeb & Barakah Almarri & Nehad Ali Shah, 2022. "A Numerical Intuition of Activation Energy in Transient Micropolar Nanofluid Flow Configured by an Exponentially Extended Plat Surface with Thermal Radiation Effects," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    2. Meznah M. Alanazi & Awatif A. Hendi & Qadeer Raza & M. Zubair Akbar Qureshi & Fatima Shafiq Hira & Bagh Ali & Nehad Ali Shah & Jae Dong Chung, 2022. "Significance of Multi-Hybrid Morphology Nanoparticles on the Dynamics of Water Fluid Subject to Thermal and Viscous Joule Performance," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
    3. M. Zubair Akbar Qureshi & Qadeer Raza & Aroosa Ramzan & M. Faisal & Bagh Ali & Nehad Ali Shah & Wajaree Weera, 2022. "Activation Energy Performance through Magnetized Hybrid Fe 3 O 4 – PP Nanofluids Flow with Impact of the Cluster Interfacial Nanolayer," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    4. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung, 2023. "Role of Nanofluid and Hybrid Nanofluid for Enhancing Thermal Conductivity towards Exponentially Stretching Curve with Modified Fourier Law Inspired by Melting Heat Effect," Mathematics, MDPI, vol. 11(5), pages 1-21, February.
    5. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Attaullah & Haroon Ur Rasheed, 2023. "Analysis of Error and Stability of Nanofluid over Horizontal Channel with Heat/Mass Transfer and Nonlinear Thermal Conductivity," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
    6. Syed Muhammad Ali Haider & Bagh Ali & Qiuwang Wang & Cunlu Zhao, 2022. "Rotating Flow and Heat Transfer of Single-Wall Carbon Nanotube and Multi-Wall Carbon Nanotube Hybrid Nanofluid with Base Fluid Water over a Stretching Sheet," Energies, MDPI, vol. 15(16), pages 1-13, August.
    7. Halavudara Basavarajappa Santhosh & Mamatha Sadananda Upadhya & N. Ameer Ahammad & Chakravarthula Siva Krishnam Raju & Nehad Ali Shah & Wajaree Weera, 2022. "Comparative Analysis of a Cone, Wedge, and Plate Packed with Microbes in Non-Fourier Heat Flux," Mathematics, MDPI, vol. 10(19), pages 1-18, September.
    8. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Attaullah, 2023. "Role of Chemically Magnetized Nanofluid Flow for Energy Transition over a Porous Stretching Pipe with Heat Generation/Absorption and Its Stability," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    9. Qadeer Raza & M. Zubair Akbar Qureshi & Behzad Ali Khan & Ahmed Kadhim Hussein & Bagh Ali & Nehad Ali Shah & Jae Dong Chung, 2022. "Insight into Dynamic of Mono and Hybrid Nanofluids Subject to Binary Chemical Reaction, Activation Energy, and Magnetic Field through the Porous Surfaces," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    10. Bagh Ali & N. Ameer Ahammad & Windarto & Abayomi S. Oke & Nehad Ali Shah & Jae Dong Chung, 2023. "Significance of Tiny Particles of Dust and TiO 2 Subject to Lorentz Force: The Case of Non-Newtonian Dusty Rotating Fluid," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    11. Hillary Muzara & Stanford Shateyi, 2023. "Magnetohydrodynamics Williamson Nanofluid Flow over an Exponentially Stretching Surface with a Chemical Reaction and Thermal Radiation," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    12. Saif Ur Rehman & Nageen Fatima & Bagh Ali & Muhammad Imran & Liaqat Ali & Nehad Ali Shah & Jae Dong Chung, 2022. "The Casson Dusty Nanofluid: Significance of Darcy–Forchheimer Law, Magnetic Field, and Non-Fourier Heat Flux Model Subject to Stretch Surface," Mathematics, MDPI, vol. 10(16), pages 1-14, August.
    13. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    14. Amjad Ali & Zainab Bukhari & Gullnaz Shahzadi & Zaheer Abbas & Muhammad Umar, 2021. "Numerical Simulation of the Thermally Developed Pulsatile Flow of a Hybrid Nanofluid in a Constricted Channel," Energies, MDPI, vol. 14(9), pages 1-22, April.
    15. Ali J. Chamkha & Sina Sazegar & Esmael Jamesahar & Mohammad Ghalambaz, 2019. "Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids," Energies, MDPI, vol. 12(3), pages 1-27, February.
    16. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    17. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    18. Samah Hamze & David Cabaleiro & Dominique Bégin & Alexandre Desforges & Thierry Maré & Brigitte Vigolo & Luis Lugo & Patrice Estellé, 2020. "Volumetric Properties and Surface Tension of Few-Layer Graphene Nanofluids Based on a Commercial Heat Transfer Fluid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    19. Amzad Hossain & Md. Mamun Molla & Md. Kamrujjaman & Muhammad Mohebujjaman & Suvash C. Saha, 2023. "MHD Mixed Convection of Non-Newtonian Bingham Nanofluid in a Wavy Enclosure with Temperature-Dependent Thermophysical Properties: A Sensitivity Analysis by Response Surface Methodology," Energies, MDPI, vol. 16(11), pages 1-39, May.
    20. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3280-:d:911392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.