IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i3p690-d1050587.html
   My bibliography  Save this article

Analysis of Error and Stability of Nanofluid over Horizontal Channel with Heat/Mass Transfer and Nonlinear Thermal Conductivity

Author

Listed:
  • Zeeshan

    (Department of Mathematics and Statistics, Bacha Khan University, Charsadda 24420, KP, Pakistan
    These authors contributed equally to this work and are co-first authors.)

  • N. Ameer Ahammad

    (Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia)

  • Nehad Ali Shah

    (Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
    These authors contributed equally to this work and are co-first authors.)

  • Jae Dong Chung

    (Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea)

  • Attaullah

    (Department of Mathematics, Abdul Wali Khan University, Mardan 25000, KP, Pakistan)

  • Haroon Ur Rasheed

    (Department of Computer Science and IT, Sarhad University, Peshawar 25000, KP, Pakistan)

Abstract

The current investigation aims to analyze the nanofluid flow between two infinite rotating horizontal channels. The lower plate is porous and stretchable. The impact of physical parameters such as Hall current, thermal characteristics, heat source/sink, chemical reaction on velocity, temperature, and concentration profiles are discussed through graphs. The governing equations are transformed to ordinary differential equations using suitable transformations and then solved numerically using the RK4 approach along with the shooting technique. For varying values of the Schmidt number (SN) and the chemical reaction factor (CRF), the concentration profile declines, but decreases for the activation energy. It is observed that the velocity profile declines with the increasing values of the suction factor. The velocity profile increases when the values of the rotation factors are increased. The temperature field exhibits a rising behavior with increasing values of the thermophoresis factor, Brownian motion, and the thermal radiation factor. It is also observed that the heat transfer rate is significant at the lower wall with the increasing values of the Prandtl number (PN). For the numerical solution, the error estimation and the residue error are calculated for the stability and confirmation of the mathematical model. The novelty of the present work is to investigate the irregular heat source and chemical reaction over the porous rotating channel. A growing performance is revealed by the temperature field, with the increase in the Brownian motion (BM), thermophoresis factor (TF), thermal conductivity factor (TCF), and the radiation factor (RF).

Suggested Citation

  • Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Attaullah & Haroon Ur Rasheed, 2023. "Analysis of Error and Stability of Nanofluid over Horizontal Channel with Heat/Mass Transfer and Nonlinear Thermal Conductivity," Mathematics, MDPI, vol. 11(3), pages 1-22, January.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:690-:d:1050587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/3/690/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/3/690/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quanfu Lou & Bagh Ali & Saif Ur Rehman & Danial Habib & Sohaib Abdal & Nehad Ali Shah & Jae Dong Chung, 2022. "Micropolar Dusty Fluid: Coriolis Force Effects on Dynamics of MHD Rotating Fluid When Lorentz Force Is Significant," Mathematics, MDPI, vol. 10(15), pages 1-13, July.
    2. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    3. Zeeshan & N. Ameer Ahammad & Haroon Ur Rasheed & Ahmed A. El-Deeb & Barakah Almarri & Nehad Ali Shah, 2022. "A Numerical Intuition of Activation Energy in Transient Micropolar Nanofluid Flow Configured by an Exponentially Extended Plat Surface with Thermal Radiation Effects," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    4. Muhammad Zeeshan Ashraf & Saif Ur Rehman & Saadia Farid & Ahmed Kadhim Hussein & Bagh Ali & Nehad Ali Shah & Wajaree Weera, 2022. "Insight into Significance of Bioconvection on MHD Tangent Hyperbolic Nanofluid Flow of Irregular Thickness across a Slender Elastic Surface," Mathematics, MDPI, vol. 10(15), pages 1-17, July.
    5. Saif Ur Rehman & Nageen Fatima & Bagh Ali & Muhammad Imran & Liaqat Ali & Nehad Ali Shah & Jae Dong Chung, 2022. "The Casson Dusty Nanofluid: Significance of Darcy–Forchheimer Law, Magnetic Field, and Non-Fourier Heat Flux Model Subject to Stretch Surface," Mathematics, MDPI, vol. 10(16), pages 1-14, August.
    6. Aissa Abderrahmane & Naef A. A. Qasem & Obai Younis & Riadh Marzouki & Abed Mourad & Nehad Ali Shah & Jae Dong Chung, 2022. "MHD Hybrid Nanofluid Mixed Convection Heat Transfer and Entropy Generation in a 3-D Triangular Porous Cavity with Zigzag Wall and Rotating Cylinder," Mathematics, MDPI, vol. 10(5), pages 1-18, February.
    7. Li, Yi-Xia & Shah, Faisal & Khan, M. Ijaz & Chinram, Ronnason & Elmasry, Yasser & Sun, Tian-Chuan, 2021. "Dynamics of Cattaneo-Christov Double Diffusion (CCDD) and arrhenius activation law on mixed convective flow towards a stretched Riga device," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Attaullah, 2023. "Role of Chemically Magnetized Nanofluid Flow for Energy Transition over a Porous Stretching Pipe with Heat Generation/Absorption and Its Stability," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    2. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung, 2023. "Role of Nanofluid and Hybrid Nanofluid for Enhancing Thermal Conductivity towards Exponentially Stretching Curve with Modified Fourier Law Inspired by Melting Heat Effect," Mathematics, MDPI, vol. 11(5), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung, 2023. "Role of Nanofluid and Hybrid Nanofluid for Enhancing Thermal Conductivity towards Exponentially Stretching Curve with Modified Fourier Law Inspired by Melting Heat Effect," Mathematics, MDPI, vol. 11(5), pages 1-21, February.
    2. Zeeshan & N. Ameer Ahammad & Nehad Ali Shah & Jae Dong Chung & Attaullah, 2023. "Role of Chemically Magnetized Nanofluid Flow for Energy Transition over a Porous Stretching Pipe with Heat Generation/Absorption and Its Stability," Mathematics, MDPI, vol. 11(8), pages 1-17, April.
    3. M. Zubair Akbar Qureshi & Qadeer Raza & Aroosa Ramzan & M. Faisal & Bagh Ali & Nehad Ali Shah & Wajaree Weera, 2022. "Activation Energy Performance through Magnetized Hybrid Fe 3 O 4 – PP Nanofluids Flow with Impact of the Cluster Interfacial Nanolayer," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    4. Syed Muhammad Ali Haider & Bagh Ali & Qiuwang Wang & Cunlu Zhao, 2022. "Rotating Flow and Heat Transfer of Single-Wall Carbon Nanotube and Multi-Wall Carbon Nanotube Hybrid Nanofluid with Base Fluid Water over a Stretching Sheet," Energies, MDPI, vol. 15(16), pages 1-13, August.
    5. Zeeshan & N. Ameer Ahammad & Haroon Ur Rasheed & Ahmed A. El-Deeb & Barakah Almarri & Nehad Ali Shah, 2022. "A Numerical Intuition of Activation Energy in Transient Micropolar Nanofluid Flow Configured by an Exponentially Extended Plat Surface with Thermal Radiation Effects," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    6. Meznah M. Alanazi & Awatif A. Hendi & Qadeer Raza & M. Zubair Akbar Qureshi & Fatima Shafiq Hira & Bagh Ali & Nehad Ali Shah & Jae Dong Chung, 2022. "Significance of Multi-Hybrid Morphology Nanoparticles on the Dynamics of Water Fluid Subject to Thermal and Viscous Joule Performance," Mathematics, MDPI, vol. 10(22), pages 1-23, November.
    7. Qadeer Raza & M. Zubair Akbar Qureshi & Bagh Ali & Ahmed Kadhim Hussein & Behzad Ali Khan & Nehad Ali Shah & Wajaree Weera, 2022. "Morphology of Hybrid MHD Nanofluid Flow through Orthogonal Coaxial Porous Disks," Mathematics, MDPI, vol. 10(18), pages 1-18, September.
    8. Halavudara Basavarajappa Santhosh & Mamatha Sadananda Upadhya & N. Ameer Ahammad & Chakravarthula Siva Krishnam Raju & Nehad Ali Shah & Wajaree Weera, 2022. "Comparative Analysis of a Cone, Wedge, and Plate Packed with Microbes in Non-Fourier Heat Flux," Mathematics, MDPI, vol. 10(19), pages 1-18, September.
    9. Qadeer Raza & M. Zubair Akbar Qureshi & Behzad Ali Khan & Ahmed Kadhim Hussein & Bagh Ali & Nehad Ali Shah & Jae Dong Chung, 2022. "Insight into Dynamic of Mono and Hybrid Nanofluids Subject to Binary Chemical Reaction, Activation Energy, and Magnetic Field through the Porous Surfaces," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
    10. Bagh Ali & N. Ameer Ahammad & Windarto & Abayomi S. Oke & Nehad Ali Shah & Jae Dong Chung, 2023. "Significance of Tiny Particles of Dust and TiO 2 Subject to Lorentz Force: The Case of Non-Newtonian Dusty Rotating Fluid," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    11. Hillary Muzara & Stanford Shateyi, 2023. "Magnetohydrodynamics Williamson Nanofluid Flow over an Exponentially Stretching Surface with a Chemical Reaction and Thermal Radiation," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    12. Saif Ur Rehman & Nageen Fatima & Bagh Ali & Muhammad Imran & Liaqat Ali & Nehad Ali Shah & Jae Dong Chung, 2022. "The Casson Dusty Nanofluid: Significance of Darcy–Forchheimer Law, Magnetic Field, and Non-Fourier Heat Flux Model Subject to Stretch Surface," Mathematics, MDPI, vol. 10(16), pages 1-14, August.
    13. Firas A. Alwawi & Feras M. Al Faqih & Mohammed Z. Swalmeh & Mohd Asrul Hery Ibrahim, 2022. "Combined Convective Energy Transmission Performance of Williamson Hybrid Nanofluid over a Cylindrical Shape with Magnetic and Radiation Impressions," Mathematics, MDPI, vol. 10(17), pages 1-19, September.
    14. Amzad Hossain & Md. Mamun Molla & Md. Kamrujjaman & Muhammad Mohebujjaman & Suvash C. Saha, 2023. "MHD Mixed Convection of Non-Newtonian Bingham Nanofluid in a Wavy Enclosure with Temperature-Dependent Thermophysical Properties: A Sensitivity Analysis by Response Surface Methodology," Energies, MDPI, vol. 16(11), pages 1-39, May.
    15. Iskandar Waini & Anuar Ishak & Yian Yian Lok & Ioan Pop, 2022. "Micropolar Nanofluid Flow in a Stagnation Region of a Shrinking Sheet with Fe 3 O 4 Nanoparticles," Mathematics, MDPI, vol. 10(17), pages 1-19, September.
    16. Pachiyappan Ragupathi & N. Ameer Ahammad & Abderrahim Wakif & Nehad Ali Shah & Yongseok Jeon, 2022. "Exploration of Multiple Transfer Phenomena within Viscous Fluid Flows over a Curved Stretching Sheet in the Co-Existence of Gyrotactic Micro-Organisms and Tiny Particles," Mathematics, MDPI, vol. 10(21), pages 1-18, November.
    17. Alsaedi, A. & Khan, Sohail A. & Hayat, T., 2023. "Mixed convective entropy optimized flow of rheological nanoliquid subject to Cattaneo-Christov fluxes: An application to solar energy," Energy, Elsevier, vol. 278(PA).
    18. Pengfei Zheng & Baolin Hou & Mingsong Zou, 2022. "Magnetorheological Fluid of High-Speed Unsteady Flow in a Narrow-Long Gap: An Unsteady Numerical Model and Analysis," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    19. Bilal Ahmad & Muhammad Ozair Ahmad & Liaqat Ali & Bagh Ali & Ahmed Kadhim Hussein & Nehad Ali Shah & Jae Dong Chung, 2022. "Significance of the Coriolis Force on the Dynamics of Carreau–Yasuda Rotating Nanofluid Subject to Darcy–Forchheimer and Gyrotactic Microorganisms," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    20. Sivasankaran Sivanandam & Fouad O. M. Mallawi, 2022. "Effects of Variable Properties on the Convective Flow of Water near Its Density Extremum in an Inclined Enclosure with Entropy Generation," Mathematics, MDPI, vol. 10(19), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:3:p:690-:d:1050587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.