IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v548y2020ics0378437119321582.html
   My bibliography  Save this article

The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus

Author

Listed:
  • Jourabian, Mahmoud
  • Rabienataj Darzi, A. Ali
  • Akbari, Omid Ali
  • Toghraie, Davood

Abstract

Constrained melting of ice as a PCM11Phase Change Material. in inclined elliptical annulus should be studied. Efficiency of heat transfer enhancement methods such as insertion of Cu nanoparticles and metallic porous matrix in this heat storage system must be determined. Porous material is made of alloys of Nickel and Steel. The enthalpy-based LBM22Lattice Boltzmann Method. with a D2Q9-DDF33Double Distribution Function. model at the REV44Representative Elementary Volume. scale is implemented. There is thermal equilibrium condition between porous media and PCM. Also, for NEPCM55Nanoparticles-Enhanced PCM. melting, the single phase flow model is adopted. Particle diameter in nanofluid is equal to 100 nm. The sub-cooling of solid PCM is ignored. Prandtl number, Stefan number, Rayleigh number and Darcy number are 6.2, 1, 2×105 and 10−3, respectively. The volumetric concentric of the nanoparticles is between 0 and 0.02. Porosity is between 1 and 0.9. It is found that inclination of the elliptical annulus does not engender any change in the liquid fraction. Inserting nanoparticles is best effective technique to enhance liquid fraction in oblate annulus due to enhanced conduction heat transfer. Use of porous matrix is recommended for prolate and inclined configurations. It obviates considerably stable stratification at bottom of elliptical annulus as a thermal storage unit.

Suggested Citation

  • Jourabian, Mahmoud & Rabienataj Darzi, A. Ali & Akbari, Omid Ali & Toghraie, Davood, 2020. "The enthalpy-based lattice Boltzmann method (LBM) for simulation of NePCM melting in inclined elliptical annulus," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
  • Handle: RePEc:eee:phsmap:v:548:y:2020:i:c:s0378437119321582
    DOI: 10.1016/j.physa.2019.123887
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119321582
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadi Balootaki, Azam & Karimipour, Arash & Toghraie, Davood, 2018. "Nano scale lattice Boltzmann method to simulate the mixed convection heat transfer of air in a lid-driven cavity with an endothermic obstacle inside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 681-701.
    2. Miller, W. & Rasin, I. & Succi, S., 2006. "Lattice Boltzmann phase-field modelling of binary-alloy solidification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(1), pages 78-83.
    3. Afrouzi, Hamid Hassanzadeh & Ahmadian, Majid & Moshfegh, Abouzar & Toghraie, Davood & Javadzadegan, Ashkan, 2019. "Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Pahamli, Younes & Hosseini, Mohammad J. & Ranjbar, Ali A. & Bahrampoury, Rasool, 2016. "Analysis of the effect of eccentricity and operational parameters in PCM-filled single-pass shell and tube heat exchangers," Renewable Energy, Elsevier, vol. 97(C), pages 344-357.
    5. Talebizadehsardari, Pouyan & Shahsavar, Amin & Toghraie, Davood & Barnoon, Pouya, 2019. "An experimental investigation for study the rheological behavior of water–carbon nanotube/magnetite nanofluid subjected to a magnetic field," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    6. Najafi, Mohammad Javid & Naghavi, Sayed Mahdi & Toghraie, Davood, 2019. "Numerical simulation of flow in hydro turbines channel to improve its efficiency by using of Lattice Boltzmann Method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 390-408.
    7. Liu, Zhenyu & Yao, Yuanpeng & Wu, Huiying, 2013. "Numerical modeling for solid–liquid phase change phenomena in porous media: Shell-and-tube type latent heat thermal energy storage," Applied Energy, Elsevier, vol. 112(C), pages 1222-1232.
    8. Nemati, Maedeh & Shateri Najaf Abady, Ali Reza & Toghraie, Davood & Karimipour, Arash, 2018. "Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid–vapor for multi-phase flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 489(C), pages 65-77.
    9. Dhaidan, Nabeel S. & Khodadadi, J.M., 2015. "Melting and convection of phase change materials in different shape containers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 449-477.
    10. Karimipour, Arash & Hemmat Esfe, Mohammad & Safaei, Mohammad Reza & Toghraie Semiromi, Davood & Jafari, Saeed & Kazi, S.N., 2014. "Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 150-168.
    11. Javadzadegan, Ashkan & Motaharpour, S. Hossein & Moshfegh, Abouzar & Akbari, Omid Ali & Afrouzi, Hamid Hassanzadeh & Toghraie, Davood, 2019. "Lattice-Boltzmann method for analysis of combined forced convection and radiation heat transfer in a channel with sinusoidal distribution on walls," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    12. Javadzadegan, Ashkan & Joshaghani, Mohammad & Moshfegh, Abouzar & Akbari, Omid Ali & Afrouzi, Hamid Hassanzadeh & Toghraie, Davood, 2020. "Accurate meso-scale simulation of mixed convective heat transfer in a porous media for a vented square with hot elliptic obstacle: An LBM approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    13. Ruhani, Behrooz & Barnoon, Pouya & Toghraie, Davood, 2019. "Statistical investigation for developing a new model for rheological behavior of Silica–ethylene glycol/Water hybrid Newtonian nanofluid using experimental data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 616-627.
    14. Alipour, Pedram & Toghraie, Davood & Karimipour, Arash & Hajian, Mehdi, 2019. "Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation: Study the equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 13-30.
    15. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Jianbao & Wang, Shisong & Hou, Xu & Wang, Zixian & Ye, Mengyan & Xing, Yuming, 2023. "Transient prediction model of finned tube energy storage system based on thermal network," Applied Energy, Elsevier, vol. 336(C).
    2. Su, Yan, 2024. "A mesoscale non-dimensional lattice Boltzmann model for self-sustained structures of swimming microbial suspensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afrouzi, Hamid Hassanzadeh & Ahmadian, Majid & Moshfegh, Abouzar & Toghraie, Davood & Javadzadegan, Ashkan, 2019. "Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    2. Xiaohong, Dai & Huajiang, Chen & Bagherzadeh, Seyed Amin & Shayan, Masoud & Akbari, Mohammad, 2020. "Statistical estimation the thermal conductivity of MWCNTs-SiO2/Water-EG nanofluid using the ridge regression method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Dolatabadi, Peiman Davari & Khanlari, Karen & Ghafory Ashtiany, Mohsen & Hosseini, Mahmood, 2020. "System identification method by using inverse solution of equations of motion in time domain and noisy condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    4. Hadipeykani, Majid & Aghadavoudi, Farshid & Toghraie, Davood, 2020. "A molecular dynamics simulation of the glass transition temperature and volumetric thermal expansion coefficient of thermoset polymer based epoxy nanocomposite reinforced by CNT: A statistical study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    5. Alsarraf, Jalal & Moradikazerouni, Alireza & Shahsavar, Amin & Afrand, Masoud & Salehipour, Hamzeh & Tran, Minh Duc, 2019. "Hydrothermal analysis of turbulent boehmite alumina nanofluid flow with different nanoparticle shapes in a minichannel heat exchanger using two-phase mixture model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 275-288.
    6. Khaje khabaz, Moahamad & Eftekhari, S. Ali & Hashemian, Mohamad & Toghraie, Davood, 2020. "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    7. Rasti, Ehsan & Talebi, Farhad & Mazaheri, Kiumars, 2019. "Improvement of drag reduction prediction in viscoelastic pipe flows using proper low-Reynolds k-ε turbulence models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 412-422.
    8. Rostami, Sara & Ahmadi-Danesh-Ashtiani, Hossein & Toghraie, Davood & Fazaeli, Reza, 2020. "A statistical method for simulation of boiling flow inside a Platinum microchannel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    9. Alipour, Pedram & Toghraie, Davood & Karimipour, Arash, 2019. "Investigation the atomic arrangement and stability of the fluid inside a rough nanochannel in both presence and absence of different roughness by using of accurate nano scale simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 639-660.
    10. Zheng, Zhang-Jing & Xu, Yang & Li, Ming-Jia, 2018. "Eccentricity optimization of a horizontal shell-and-tube latent-heat thermal energy storage unit based on melting and melting-solidifying performance," Applied Energy, Elsevier, vol. 220(C), pages 447-454.
    11. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
    12. Ahmadi Balootaki, Azam & Karimipour, Arash & Toghraie, Davood, 2018. "Nano scale lattice Boltzmann method to simulate the mixed convection heat transfer of air in a lid-driven cavity with an endothermic obstacle inside," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 681-701.
    13. Safaei, Mohammad Reza & Karimipour, Arash & Abdollahi, Ali & Nguyen, Truong Khang, 2018. "The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 515-535.
    14. Ezzatneshan, Eslam & Vaseghnia, Hamed, 2020. "Evaluation of equations of state in multiphase lattice Boltzmann method with considering surface wettability effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    15. Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
    16. Nafchi, Peyman Mirzakhani & Karimipour, Arash & Afrand, Masoud, 2019. "The evaluation on a new non-Newtonian hybrid mixture composed of TiO2/ZnO/EG to present a statistical approach of power law for its rheological and thermal properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 1-18.
    17. Yan, Zhongjun & Zhu, Yuexiang & Liu, Lifang & Yu, Zhun (Jerry) & Li, Shuisheng & Zhang, Guoqiang, 2023. "Performance enhancement of cylindrical latent heat storage units in hot water tanks via wavy design," Renewable Energy, Elsevier, vol. 218(C).
    18. Ma, Yuan & Mohebbi, Rasul & Rashidi, M.M. & Yang, Zhigang & Sheremet, Mikhail, 2020. "Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    19. Li, Chengwu & Zhao, Yuechao & Ai, Dihao & Wang, Qifei & Peng, Zhigao & Li, Yingjun, 2020. "Multi-component LBM-LES model of the air and methane flow in tunnels and its validation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    20. Jahangiri, Ali & Mohammadi, Samira & Akbari, Mohammad, 2019. "Modeling the one-dimensional inverse heat transfer problem using a Haar wavelet collocation approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 13-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:548:y:2020:i:c:s0378437119321582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.