IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v28y2013icp22-29.html
   My bibliography  Save this article

Urban density and climate change: a STIRPAT analysis using city-level data

Author

Listed:
  • Liddle, Brantley

Abstract

Two important, increasing trends for those concerned about climate change to consider are urbanization/the importance of cities and energy used in transport—particularly energy used to achieve personal mobility. While national urbanization levels are not a good indicator of urban transport demand, there is an established negative relationship between urban density and such demand. This paper uses a consistent, well-known population-based framework (the STIRPAT model) and three separate, but highly related, datasets of cities from developed and developing countries (with observations from 1990, 1995, and 2001) to examine the relationship among private transport energy consumption, population, income, urban density, and several variables (e.g., network size and prices) that describe the nature of the public and private transport systems of those cities. The paper confirms the now well-established result that urban density is negatively correlated with urban private transport energy consumption. In terms of policies, improving private vehicle fuel efficiency, in particular, and increasing fuel price as well as other ownership/operating costs for private transport could have a substantial impact on lowering transport energy consumption. On the other hand, there is no evidence that further lowering the cost to riders of public transport would lower private transport energy consumption. For cities in developing countries, demographic variables (population size and urban density) are particularly important in determining private transport energy consumption. Also, private transport energy consumption is considerably less price sensitive in those developing country cities compared to cities in the most developed countries.

Suggested Citation

  • Liddle, Brantley, 2013. "Urban density and climate change: a STIRPAT analysis using city-level data," Journal of Transport Geography, Elsevier, vol. 28(C), pages 22-29.
  • Handle: RePEc:eee:jotrge:v:28:y:2013:i:c:p:22-29
    DOI: 10.1016/j.jtrangeo.2012.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692312002633
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2012.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brantley Liddle, 2003. "Demographic dynamics and per capita environmental impact: using panel regressions and household decompositions to examine population and transport," MPIDR Working Papers WP-2003-029, Max Planck Institute for Demographic Research, Rostock, Germany.
    2. Albalate, Daniel & Bel, Germà, 2010. "What shapes local public transportation in Europe? Economics, mobility, institutions, and geography," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(5), pages 775-790, September.
    3. Kenworthy, Jeffrey R. & Laube, Felix B., 1999. "Patterns of automobile dependence in cities: an international overview of key physical and economic dimensions with some implications for urban policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(7-8), pages 691-723.
    4. Brantley Liddle, 2011. "Consumption-Driven Environmental Impact and Age Structure Change in OECD Countries," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 24(30), pages 749-770.
    5. Liddle, Brantley & Lung, Sidney, 2010. "Age-Structure, Urbanization, and Climate Change in Developed Countries: Revisiting STIRPAT for Disaggregated Population and Consumption-Related Environmental Impacts," MPRA Paper 59579, University Library of Munich, Germany.
    6. Alexia Prskawetz & Jiang Leiwen & Brian C. O Neill, 2004. "Demographic composition and projections of car use in Austria," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 2(1), pages 175-202.
    7. Karathodorou, Niovi & Graham, Daniel J. & Noland, Robert B., 2010. "Estimating the effect of urban density on fuel demand," Energy Economics, Elsevier, vol. 32(1), pages 86-92, January.
    8. Travisi, Chiara M. & Camagni, Roberto & Nijkamp, Peter, 2010. "Impacts of urban sprawl and commuting: a modelling study for Italy," Journal of Transport Geography, Elsevier, vol. 18(3), pages 382-392.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    2. Liddle, Brantley, 2013. "Population, Affluence, and Environmental Impact Across Development: Evidence from Panel Cointegration Modeling," MPRA Paper 52088, University Library of Munich, Germany.
    3. Liddle, Brantley & Lung, Sidney, 2013. "Might electricity consumption cause urbanization instead? Evidence from heterogeneous panel long-run causality tests," MPRA Paper 52333, University Library of Munich, Germany.
    4. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    5. Underwood, Anthony & Zahran, Sammy, 2015. "The carbon implications of declining household scale economies," Ecological Economics, Elsevier, vol. 116(C), pages 182-190.
    6. Menz, Tobias & Welsch, Heinz, 2012. "Population aging and carbon emissions in OECD countries: Accounting for life-cycle and cohort effects," Energy Economics, Elsevier, vol. 34(3), pages 842-849.
    7. Liddle, Brantley, 2013. "Urban Transport Pollution: Revisiting the Environmental Kuznets Curve," MPRA Paper 53632, University Library of Munich, Germany.
    8. Georgina Mace & Emma Terama & Tim Coulson, 2013. "Perspectives on International Trends and Dynamics in Population and Consumption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(4), pages 555-568, August.
    9. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    10. Poumanyvong, Phetkeo & Kaneko, Shinji & Dhakal, Shobhakar, 2012. "Impacts of urbanization on national transport and road energy use: Evidence from low, middle and high income countries," Energy Policy, Elsevier, vol. 46(C), pages 268-277.
    11. Yan, Xiang & Xin, Boqing & Cheng, Changgao & Han, Zhiyong, 2024. "Unpacking energy consumption in China's urbanization: Industry development, population growth, and spatial expansion," Research in International Business and Finance, Elsevier, vol. 70(PA).
    12. Yu Sang Chang & Sung Jun Jo & Yoo-Taek Lee & Yoonji Lee, 2021. "Population Density or Populations Size. Which Factor Determines Urban Traffic Congestion?," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    13. Wen Guo & Tao Sun & Hongjun Dai, 2016. "Effect of Population Structure Change on Carbon Emission in China," Sustainability, MDPI, vol. 8(3), pages 1-20, March.
    14. Jaehyeok Kim & Minwoo Jang & Donghyun Shin, 2019. "Examining the Role of Population Age Structure upon Residential Electricity Demand: A Case from Korea," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    15. Hyungwoo Lim & Jaehyeok Kim & Ha-Hyun Jo, 2020. "Population Age Structure and Greenhouse Gas Emissions from Road Transportation: A Panel Cointegration Analysis of 21 OECD Countries," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    16. Okada, Akira, 2012. "Is an increased elderly population related to decreased CO2 emissions from road transportation?," Energy Policy, Elsevier, vol. 45(C), pages 286-292.
    17. Jaehyeok Kim & Hyungwoo Lim & Ha-Hyun Jo, 2020. "Do Aging and Low Fertility Reduce Carbon Emissions in Korea? Evidence from IPAT Augmented EKC Analysis," IJERPH, MDPI, vol. 17(8), pages 1-15, April.
    18. Proque, Andressa Lemes & dos Santos, Gervásio Ferreira & Betarelli Junior, Admir Antonio & Larson, William D., 2020. "Effects of land use and transportation policies on the spatial distribution of urban energy consumption in Brazil," Energy Economics, Elsevier, vol. 90(C).
    19. Zhang, Chuanguo & Tan, Zheng, 2016. "The relationships between population factors and China's carbon emissions: Does population aging matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1018-1025.
    20. Dimnwobi, Stephen & Ekesiobi, Chukwunonso & Madichie, Chekwube & Asongu, Simplice, 2021. "Population Dynamics and Environmental Quality in Africa," MPRA Paper 110640, University Library of Munich, Germany.

    More about this item

    Keywords

    Urban density; STIRPAT; Transport energy demand; City-based data;
    All these keywords.

    JEL classification:

    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns
    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:28:y:2013:i:c:p:22-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.