IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i1p133-d725350.html
   My bibliography  Save this article

The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania

Author

Listed:
  • Alvyra Slepetiene

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Instituto al.1, Akademija, LT-58344 Kedainiai, Lithuania)

  • Mykola Kochiieru

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Instituto al.1, Akademija, LT-58344 Kedainiai, Lithuania)

  • Linas Jurgutis

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Instituto al.1, Akademija, LT-58344 Kedainiai, Lithuania)

  • Audrone Mankeviciene

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Instituto al.1, Akademija, LT-58344 Kedainiai, Lithuania)

  • Aida Skersiene

    (Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Instituto al.1, Akademija, LT-58344 Kedainiai, Lithuania)

  • Olgirda Belova

    (Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Liepų St. 1, Girionys, LT-53101 Kaunas, Lithuania)

Abstract

The most important component of agricultural system are soils as the basis for the growth of plants, accumulation of water, plant nutrients and organic matter. The main task of our research was to ascertain changes in soil organic carbon (SOC) and mobile humified carbon fractions in digestate-treated soils. We have performed three field experiments using the same design on two soil types in 2019–2020. We studied the fertilization effects of different phases of digestate on Retisol and Fluvisol. Fertilization treatments: control; separated liquid digestate 85 kg ha −1 N; and 170 kg ha −1 170 N; separated solid digestate 85 kg ha −1 N; and 170 kg ha −1 N. We have found a greater positive effect on the increase in SOC because of the use of the maximum recommended fertilization rate of the solid digestate. The content of mobile humic substances (MHS) tended to increase in grassland and crop rotation field in digestate-treated soil. In our experiment, maximum concentration of SOC was found in 0–10 cm soil layer, while in the deeper layers the amount of SOC, MHS and mobile humic acids proportionally decreased. We concluded, that long-term factors as soil type and land use strongly affected the humification level expressed as HD (%) in the soil and the highest HD was determined in the grassland soil in Fluvisol.

Suggested Citation

  • Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:1:p:133-:d:725350
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/1/133/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/1/133/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danute Petraityte & Jurgita Ceseviciene & Ausra Arlauskiene & Alvyra Slepetiene & Aida Skersiene & Viktorija Gecaite, 2022. "Variation of Soil Nitrogen, Organic Carbon, and Waxy Wheat Yield Using Liquid Organic and Mineral Fertilizers," Agriculture, MDPI, vol. 12(12), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    2. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    3. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    4. Ying-Tzy Jou & Elmi Junita Tarigan & Cahyo Prayogo & Chesly Kit Kobua & Yu-Ting Weng & Yu-Min Wang, 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice ( Oryza sativa ) Seed Germination and Root Development," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    5. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    6. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    7. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    8. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    9. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    10. Sung Kyu Kim & Fiona Marshall & Neil M. Dawson, 2022. "Revisiting Rwanda’s agricultural intensification policy: benefits of embracing farmer heterogeneity and crop-livestock integration strategies," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 637-656, June.
    11. Muhammad Faisal Saleem & Abdul Ghaffar & Muhammad Habib ur Rahman & Muhammad Imran & Rashid Iqbal & Walid Soufan & Subhan Danish & Rahul Datta & Karthika Rajendran & Ayman EL Sabagh, 2022. "Effect of Short-Term Zero Tillage and Legume Intercrops on Soil Quality, Agronomic and Physiological Aspects of Cotton under Arid Climate," Land, MDPI, vol. 11(2), pages 1-15, February.
    12. Ziauddin Safari & Sayed Tamim Rahimi & Kamal Ahmed & Ahmad Sharafati & Ghaith Falah Ziarh & Shamsuddin Shahid & Tarmizi Ismail & Nadhir Al-Ansari & Eun-Sung Chung & Xiaojun Wang, 2021. "Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    13. Jacek Pranagal & Sławomir Ligęza & Halina Smal & Joanna Gmitrowicz-Iwan, 2023. "Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality," Land, MDPI, vol. 12(2), pages 1-20, February.
    14. Alberts Auzins & Ieva Leimane & Agnese Krievina & Inga Morozova & Andris Miglavs & Peteris Lakovskis, 2023. "Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage," Agriculture, MDPI, vol. 13(8), pages 1-25, August.
    15. Erika María López-García & Edgardo Torres-Trejo & Lucia López-Reyes & Ángel David Flores-Domínguez & Ricardo Darío Peña-Moreno & Jesús Francisco López-Olguín, 2020. "Estimation of soil erosion using USLE and GIS in the locality of Tzicatlacoyan, Puebla, México," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(1), pages 9-17.
    16. Ajay Kumar & Sushil Kumar & Komal & Nirala Ramchiary & Pardeep Singh, 2021. "Role of Traditional Ethnobotanical Knowledge and Indigenous Communities in Achieving Sustainable Development Goals," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    17. Anna Raschke & J. Sebastian Hernandez-Suarez & A. Pouyan Nejadhashemi & Kalyanmoy Deb, 2021. "Multidimensional Aspects of Sustainable Biofuel Feedstock Production," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    18. Monther M. Tahat & Kholoud M. Alananbeh & Yahia A. Othman & Daniel I. Leskovar, 2020. "Soil Health and Sustainable Agriculture," Sustainability, MDPI, vol. 12(12), pages 1-26, June.
    19. Runxia Zhang & Xueyong Zhao & Chencheng Zhang & Jing Li, 2020. "Impact of Rapid and Intensive Land Use/Land Cover Change on Soil Properties in Arid Regions: A Case Study of Lanzhou New Area, China," Sustainability, MDPI, vol. 12(21), pages 1-16, November.
    20. Majid, Maliqa & Khan, Junaid N. & Ahmad Shah, Qazi Muneeb & Masoodi, Khalid Z. & Afroza, Baseerat & Parvaze, Saqib, 2021. "Evaluation of hydroponic systems for the cultivation of Lettuce (Lactuca sativa L., var. Longifolia) and comparison with protected soil-based cultivation," Agricultural Water Management, Elsevier, vol. 245(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:1:p:133-:d:725350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.