IDEAS home Printed from https://ideas.repec.org/a/mfj/journl/v3y1999i2p71-101.html
   My bibliography  Save this article

A Multicriteria Discrimination Method for the Prediction of Financial Distress: The Case of Greece

Author

Listed:
  • Michael Doumpos

    (Technical University of Crete, Greece)

  • Constantin Zopounidis

    (Technical University of Crete, Greece)

Abstract

Financial distress prediction is an essential issue in finance. Especially in emerging economies, predicting the future financial situation of individual corporate entities is even more significant, bearing in mind the general economic turmoil that can be caused by business failures. The research on developing quantitative financial distress prediction models has been focused on building discriminant models distinguishing healthy firms from financially distressed ones. Following this discrimination approach, this paper explores the applicability of a new non–parametric multicriteria decision aid discrimination method, called M.H.DIS, to predict financial distress using data concerning the case of Greece. A comparison with discriminant and logit analysis is performed using both a basic and a holdout sample. The results show that M.H.DIS can be considered as a new alternative tool for financial distress prediction. Its performance is superior to discriminant analysis and comparable to logit analysis.

Suggested Citation

  • Michael Doumpos & Constantin Zopounidis, 1999. "A Multicriteria Discrimination Method for the Prediction of Financial Distress: The Case of Greece," Multinational Finance Journal, Multinational Finance Journal, vol. 3(2), pages 71-101, June.
  • Handle: RePEc:mfj:journl:v:3:y:1999:i:2:p:71-101
    as

    Download full text from publisher

    File URL: http://www.mfsociety.org/modules/modDashboard/uploadFiles/journals/MJ~644~p16stg5a3c17bbkm51a4m1gmkc5e4.pdf
    Download Restriction: no

    File URL: http://www.mfsociety.org/modules/modDashboard/uploadFiles/journals/googleScholar/665.html
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Slowinski & C. Zopounidis, 1995. "Application of the Rough Set Approach to Evaluation of Bankruptcy Risk," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 4(1), pages 27-41, March.
    2. Constantin Zopounidis & Michael Doumpos, 1999. "Business failure prediction using the UTADIS multicriteria analysis method," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(11), pages 1138-1148, November.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Keasey, K & McGuinness, P & Short, H, 1990. "Multilogit approach to predicting corporate failure--Further analysis and the issue of signal consistency," Omega, Elsevier, vol. 18(1), pages 85-94.
    5. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    6. William F. Messier, Jr. & James V. Hansen, 1988. "Inducing Rules for Expert System Development: An Example Using Default and Bankruptcy Data," Management Science, INFORMS, vol. 34(12), pages 1403-1415, December.
    7. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    8. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    9. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    10. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    11. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    12. Eisenbeis, Robert A, 1977. "Pitfalls in the Application of Discriminant Analysis in Business, Finance, and Economics," Journal of Finance, American Finance Association, vol. 32(3), pages 875-900, June.
    13. Bardos, Mireille, 1998. "Detecting the risk of company failure at the Banque de France," Journal of Banking & Finance, Elsevier, vol. 22(10-11), pages 1405-1419, October.
    14. Luoma, M & Laitinen, EK, 1991. "Survival analysis as a tool for company failure prediction," Omega, Elsevier, vol. 19(6), pages 673-678.
    15. Frydman, Halina & Altman, Edward I & Kao, Duen-Li, 1985. "Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress," Journal of Finance, American Finance Association, vol. 40(1), pages 269-291, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Jiang & Stewart Jones, 2018. "Corporate distress prediction in China: a machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(4), pages 1063-1109, December.
    2. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Bankruptcy prediction for private firms in developing economies: a scoping review and guidance for future research," Management Review Quarterly, Springer, vol. 72(4), pages 927-966, December.
    3. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    4. Balcaen S. & Ooghe H., 2004. "Alternative methodologies in studies on business failure: do they produce better results than the classic statistical methods?," Vlerick Leuven Gent Management School Working Paper Series 2004-16, Vlerick Leuven Gent Management School.
    5. P. Du Jardin & E. Séverin, 2011. "Predicting Corporate Bankruptcy Using Self-Organising map: An empirical study to Improve the Forecasting horizon of financial failure model," Post-Print hal-00801878, HAL.
    6. Muqaddas Khalid & Qaisar Abbas & Fizzah Malik & Shahid Ali, 2020. "Impact of audit committee attributes on financial distress: Evidence from Pakistan," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-19, March.
    7. Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
    8. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    9. Ramon Oehninger & Michael J. Kendzia & Felix Scherrer, 2020. "Preventing Corporate Turnarounds through an Early Warning System," International Journal of Management, Knowledge and Learning, International School for Social and Business Studies, Celje, Slovenia, vol. 9(2), pages 185-205.
    10. Burcu Dikmen & Güray Küçükkocaoğlu, 2010. "The detection of earnings manipulation: the three-phase cutting plane algorithm using mathematical programming," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(5), pages 442-466.
    11. Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
    12. Spathis, Charalambos & Doumpos, Michael & Zopounidis, Constantin, 2003. "Using client performance measures to identify pre-engagement factors associated with qualified audit reports in Greece," The International Journal of Accounting, Elsevier, vol. 38(3), pages 267-284.
    13. Selcuk Caner & Mehmet Baha Karan, 2012. "Screening Creditworthiness of SME's: The Case of Small Business Assistance in Turkey," Multinational Finance Journal, Multinational Finance Journal, vol. 16(1-2), pages 1-20, March - J.
    14. Silvia Angilella & Maria Rosaria Pappalardo, 2021. "Assessment of a failure prediction model in the energy sector: a multicriteria discrimination approach with Promethee based classification," Papers 2102.07656, arXiv.org.
    15. Yang Liu & Qingguo Zeng & Bobo Li & Lili Ma & Joaquín Ordieres‐Meré, 2022. "Anticipating financial distress of high‐tech startups in the European Union: A machine learning approach for imbalanced samples," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1131-1155, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    2. Beynon, Malcolm J. & Peel, Michael J., 2001. "Variable precision rough set theory and data discretisation: an application to corporate failure prediction," Omega, Elsevier, vol. 29(6), pages 561-576, December.
    3. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    4. Fernando García & Francisco Guijarro & Ismael Moya, 2013. "Monitoring credit risk in the social economy sector by means of a binary goal programming model," Service Business, Springer;Pan-Pacific Business Association, vol. 7(3), pages 483-495, September.
    5. Thomas E. Mckee, 2000. "Developing a bankruptcy prediction model via rough sets theory," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(3), pages 159-173, September.
    6. Bose, Indranil & Pal, Raktim, 2006. "Predicting the survival or failure of click-and-mortar corporations: A knowledge discovery approach," European Journal of Operational Research, Elsevier, vol. 174(2), pages 959-982, October.
    7. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    8. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    9. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    10. Şaban Çelik & Bora Aktan & Bruce Burton, 2022. "Firm dynamics and bankruptcy processes: A new theoretical model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 567-591, April.
    11. Thomas E. McKee, 2003. "Rough sets bankruptcy prediction models versus auditor signalling rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(8), pages 569-586.
    12. Ana Paula Matias Gama & Helena Susana Amaral Geraldes, 2012. "Credit risk assessment and the impact of the New Basel Capital Accord on small and medium‐sized enterprises," Management Research Review, Emerald Group Publishing Limited, vol. 35(8), pages 727-749, July.
    13. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    14. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    15. Ioannis Tsolas, 2015. "Firm credit risk evaluation: a series two-stage DEA modeling framework," Annals of Operations Research, Springer, vol. 233(1), pages 483-500, October.
    16. Akarsh Kainth & Ranik Raaen Wahlstrøm, 2021. "Do IFRS Promote Transparency? Evidence from the Bankruptcy Prediction of Privately Held Swedish and Norwegian Companies," JRFM, MDPI, vol. 14(3), pages 1-15, March.
    17. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    18. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    19. Aaro Hazak & Kadri Männasoo, 2007. "Indicators of corporate default : an EU based empirical study," Bank of Estonia Working Papers 2007-10, Bank of Estonia, revised 04 Sep 2007.
    20. Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2020. "Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses," JRFM, MDPI, vol. 13(9), pages 1-15, September.

    More about this item

    Keywords

    discrimination; financial distress; mathematical programming; multi-criteria decision aid;
    All these keywords.

    JEL classification:

    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mfj:journl:v:3:y:1999:i:2:p:71-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theodossiou Panayiotis (email available below). General contact details of provider: https://edirc.repec.org/data/mfsssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.