Measuring the Risk of Bankruptcy in the Romanian Economy. Developments and Perspectives
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Nicoleta Bărbuță-Mișu & Mara Madaleno, 2020. "Assessment of Bankruptcy Risk of Large Companies: European Countries Evolution Analysis," JRFM, MDPI, vol. 13(3), pages 1-28, March.
- Doina PRODAN-PALADE, 2017. "Bankruptcy risk prediction models based on artificial neural networks," The Audit Financiar journal, Chamber of Financial Auditors of Romania, vol. 15(147), pages 418-418.
- Gheorghita DINCA & Mirela Camelia BABA & Marius Sorin DINCA & Bardhyl DAUTI & Fitim DEARI, 2017. "Insolvency Risk Prediction Using the Logit and Logistic Models: Some Evidences from Romania," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(4), pages 139-157.
- Aydin Aslan & Lars Poppe & Peter Posch, 2021. "Are Sustainable Companies More Likely to Default? Evidence from the Dynamics between Credit and ESG Ratings," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
- Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Katarina Valaskova & Pavol Durana & Peter Adamko & Jaroslav Jaros, 2020. "Financial Compass for Slovak Enterprises: Modeling Economic Stability of Agricultural Entities," JRFM, MDPI, vol. 13(5), pages 1-16, May.
- Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
- Andrzej Jaki & Wojciech Ćwięk, 2020. "Bankruptcy Prediction Models Based on Value Measures," JRFM, MDPI, vol. 14(1), pages 1-14, December.
- Sanghoon Lee & Keunho Choi & Donghee Yoo, 2020. "Predicting the Insolvency of SMEs Using Technological Feasibility Assessment Information and Data Mining Techniques," Sustainability, MDPI, vol. 12(23), pages 1-17, November.
- Meles, Antonio & Salerno, Dario & Sampagnaro, Gabriele & Verdoliva, Vincenzo & Zhang, Jianing, 2023. "The influence of green innovation on default risk: Evidence from Europe," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 692-710.
- Daniela Rybárová & Helena Majdúchová & Peter Štetka & Darina Luščíková, 2021. "Reliability and Accuracy of Alternative Default Prediction Models: Evidence from Slovakia," IJFS, MDPI, vol. 9(4), pages 1-33, November.
- Imen Khanchel & Naima Lassoued, 2022. "ESG Disclosure and the Cost of Capital: Is There a Ratcheting Effect over Time?," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
- Jaroslaw Kaczmarek & Sergio Luis Nanez Alonso & Andrzej Sokolowski & Kamil Fijorek & Sabina Denkowska, 2021. "Financial threat profiles of industrial enterprises in Poland," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 463-498, June.
- Dorohan-Pysarenko, Liudmyla & Rębilas, Rafał & Yehorova, Olena & Yasnolob, Ilona & Kononenko, Zhanna, 2021. "Methodological peculiarities of probability estimation of bankruptcy of agrarian enterprises in Ukraine," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 7(2), June.
- Chee Sun Lee & Peck Yeng Sharon Cheang & Massoud Moslehpour, 2022. "Predictive Analytics in Business Analytics: Decision Tree," Advances in Decision Sciences, Asia University, Taiwan, vol. 26(1), pages 1-30, March.
- Teplova, Tamara & Sokolova, Tatiana & Kissa, David, 2023. "Revealing stock liquidity determinants by means of explainable AI: The role of ESG before and during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 86(PB).
- Irina N. Tkachenko & Ivan A. Chechulin, 2024. "Crisis resilience assessment and management of public utility companies," Journal of New Economy, Ural State University of Economics, vol. 25(1), pages 131-159, April.
- Beata Gavurova & Sylvia Jencova & Radovan Bacik & Marta Miskufova & Stanislav Letkovsky, 2022. "Artificial intelligence in predicting the bankruptcy of non-financial corporations," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1215-1251, December.
- Jarmila Horváthová & Martina Mokrišová & Martin Bača, 2023. "Bankruptcy Prediction for Sustainability of Businesses: The Application of Graph Theoretical Modeling," Mathematics, MDPI, vol. 11(24), pages 1-20, December.
- Lily Davies & Mark Kattenberg & Benedikt Vogt, 2023. "Predicting Firm Exits with Machine Learning: Implications for Selection into COVID-19 Support and Productivity Growth," CPB Discussion Paper 444, CPB Netherlands Bureau for Economic Policy Analysis.
- Adam Triggs, 2023. "Promoting sustainable investment through financial architecture reform," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 39(2), pages 267-282.
- Alessandro Gennaro, 2021. "Insolvency Risk and Value Maximization: A Convergence between Financial Management and Risk Management," Risks, MDPI, vol. 9(6), pages 1-36, June.
- Mateusz Heba & Marcin Chlebus, 2020. "Impact of using industry benchmark financial ratios on performance of bankruptcy prediction logistic regression model," Working Papers 2020-30, Faculty of Economic Sciences, University of Warsaw.
- Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
- Yu Zhao & Shaopeng Wei & Yu Guo & Qing Yang & Xingyan Chen & Qing Li & Fuzhen Zhuang & Ji Liu & Gang Kou, 2022. "Combining Intra-Risk and Contagion Risk for Enterprise Bankruptcy Prediction Using Graph Neural Networks," Papers 2202.03874, arXiv.org, revised Jul 2022.
More about this item
Keywords
bankruptcy risk; sector of activity; liquidity; comparative analysis;All these keywords.
JEL classification:
- D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
- E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
- G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
- G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aio:fpvfcf:v:1:y:2022:i:24:p:91-104. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alina Manta (email available below). General contact details of provider: https://edirc.repec.org/data/fecraro.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.