IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7120-d669689.html
   My bibliography  Save this article

Ratio Selection between Six Sectors in the Visegrad Group Using Parametric and Nonparametric ANOVA

Author

Listed:
  • Sebastian Klaudiusz Tomczak

    (Department of Operations Research and Business Intelligence, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland)

Abstract

The changes that have been triggered in market economies by COVID-19 have increased the importance of assessing the financial standing of companies and sectors. It is essential for managers, lenders, and investors to properly evaluate the financial condition of companies. Therefore, it is crucial to select indicators that show the differences in the values of market sectors before, and during, the COVID-19 pandemic (checking the stability of ratios over time). We used parametric and nonparametric analyses of variance (ANOVA) to single out indicators. The sample consists of listed companies in six sectors from the Visegrad group: manufacturing, construction, retail, wholesale trade, transportation and warehousing, and energy. We applied yearly and quarterly analyses in the periods from Q1 2017–Q1 2021. The analyses take into account 82 indicators. The results of the parametric ANOVA indicate that only the ratio of the company size shows the differences between the sectors in most of the periods of quarterly analysis. In comparison, the results of the nonparametric ANOVA demonstrate that five ratios show differences between the sectors in the quarterly analysis, and nine show differences in the yearly analysis. On the basis of the results, the construction and energy sectors are the least effective in managing their assets.

Suggested Citation

  • Sebastian Klaudiusz Tomczak, 2021. "Ratio Selection between Six Sectors in the Visegrad Group Using Parametric and Nonparametric ANOVA," Energies, MDPI, vol. 14(21), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7120-:d:669689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Klaudiusz Tomczak, 2019. "Comparison of the Financial Standing of Companies Generating Electricity from Renewable Sources and Fossil Fuels: A New Hybrid Approach," Energies, MDPI, vol. 12(20), pages 1-20, October.
    2. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    3. Warwick McKibbin & Roshen Fernando, 2021. "The Global Macroeconomic Impacts of COVID-19: Seven Scenarios," Asian Economic Papers, MIT Press, vol. 20(2), pages 1-30, Summer.
    4. Michal Karas & Mária Režňáková, 2017. "The Potential of Dynamic Indicator in Development of the Bankruptcy Prediction Models: the Case of Construction Companies," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(2), pages 641-652.
    5. Lucia Svabova & Lucia Michalkova & Marek Durica & Elvira Nica, 2020. "Business Failure Prediction for Slovak Small and Medium-Sized Companies," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    6. Faheem Aslam & Wahbeeah Mohti & Paulo Ferreira, 2020. "Evidence of Intraday Multifractality in European Stock Markets during the Recent Coronavirus (COVID-19) Outbreak," IJFS, MDPI, vol. 8(2), pages 1-13, May.
    7. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    8. Sebastian Klaudiusz Tomczak & Edward Radosiński, 2017. "The effectiveness of discriminant models based on the example of the manufacturing sector," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 27(3), pages 81-97.
    9. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    10. J. P. Royston, 1982. "An Extension of Shapiro and Wilk's W Test for Normality to Large Samples," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 115-124, June.
    11. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    12. J. P. Royston, 1982. "The W Test for Normality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(2), pages 176-180, June.
    13. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    14. Durica Marek & Valaskova Katarina & Janoskova Katarina, 2019. "Logit business failure prediction in V4 countries," Engineering Management in Production and Services, Sciendo, vol. 11(4), pages 54-64, December.
    15. Goodell, John W., 2020. "COVID-19 and finance: Agendas for future research," Finance Research Letters, Elsevier, vol. 35(C).
    16. Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
    17. Tomas Kliestik & Jaromir Vrbka & Zuzana Rowland, 2018. "Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 13(3), pages 569-593, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Małgorzata Łatuszyńska & Kesra Nermend, 2022. "Energy Decision Making: Problems, Methods, and Tools—An Overview," Energies, MDPI, vol. 15(15), pages 1-5, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    2. Michal Pavlicko & Marek Durica & Jaroslav Mazanec, 2021. "Ensemble Model of the Financial Distress Prediction in Visegrad Group Countries," Mathematics, MDPI, vol. 9(16), pages 1-26, August.
    3. Andrzej Geise & Magdalena Kuczmarska & Jarosław Pawlowski, 2021. "Corporate Failure Prediction of Construction Companies in Poland: Evidence from Logit Model," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 99-116.
    4. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    5. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    6. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    7. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    8. Fatima Zahra Azayite & Said Achchab, 2019. "A hybrid neural network model based on improved PSO and SA for bankruptcy prediction," Papers 1907.12179, arXiv.org.
    9. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    10. Jiaming Liu & Chong Wu, 2017. "Dynamic forecasting of financial distress: the hybrid use of incremental bagging and genetic algorithm—empirical study of Chinese listed corporations," Risk Management, Palgrave Macmillan, vol. 19(1), pages 32-52, February.
    11. Lenka Papíková & Mário Papík, 2022. "Effects of classification, feature selection, and resampling methods on bankruptcy prediction of small and medium‐sized enterprises," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(4), pages 254-281, October.
    12. Michal Pavlicko & Jaroslav Mazanec, 2022. "Minimalistic Logit Model as an Effective Tool for Predicting the Risk of Financial Distress in the Visegrad Group," Mathematics, MDPI, vol. 10(8), pages 1-22, April.
    13. Kim Long Tran & Hoang Anh Le & Thanh Hien Nguyen & Duc Trung Nguyen, 2022. "Explainable Machine Learning for Financial Distress Prediction: Evidence from Vietnam," Data, MDPI, vol. 7(11), pages 1-12, November.
    14. Zhichao Luo & Pingyu Hsu & Ni Xu, 2020. "SME Default Prediction Framework with the Effective Use of External Public Credit Data," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    15. Sun, Xiaojun & Lei, Yalin, 2021. "Research on financial early warning of mining listed companies based on BP neural network model," Resources Policy, Elsevier, vol. 73(C).
    16. Dawen Yan & Guotai Chi & Kin Keung Lai, 2020. "Financial Distress Prediction and Feature Selection in Multiple Periods by Lassoing Unconstrained Distributed Lag Non-linear Models," Mathematics, MDPI, vol. 8(8), pages 1-27, August.
    17. T.G. Saji, 2018. "Financial Distress and Stock Market Failures: Lessons from Indian Realty Sector," Vision, , vol. 22(1), pages 50-60, March.
    18. Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
    19. Jiaming Liu & Chengzhang Li & Peng Ouyang & Jiajia Liu & Chong Wu, 2023. "Interpreting the prediction results of the tree‐based gradient boosting models for financial distress prediction with an explainable machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1112-1137, August.
    20. Sanghoon Lee & Keunho Choi & Donghee Yoo, 2020. "Predicting the Insolvency of SMEs Using Technological Feasibility Assessment Information and Data Mining Techniques," Sustainability, MDPI, vol. 12(23), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7120-:d:669689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.