Early Insolvency Prediction as a Key for Sustainable Business Growth
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- J. C. Neves & A. Vieira, 2006. "Improving bankruptcy prediction with Hidden Layer Learning Vector Quantization," European Accounting Review, Taylor & Francis Journals, vol. 15(2), pages 253-271.
- Mossman, Charles E, et al, 1998. "An Empirical Comparison of Bankruptcy Models," The Financial Review, Eastern Finance Association, vol. 33(2), pages 35-53, May.
- Evi Neophytou & Cecilio Mar Molinero, 2004. "Predicting Corporate Failure in the UK: A Multidimensional Scaling Approach," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 677-710, June.
- Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, Wiley Blackwell, vol. 10(1), pages 167-179.
- Andreas Charitou & Evi Neophytou & Chris Charalambous, 2004. "Predicting corporate failure: empirical evidence for the UK," European Accounting Review, Taylor & Francis Journals, vol. 13(3), pages 465-497.
- Murugan Anandarajan & Picheng Lee & Asokan Anandarajan, 2001. "Bankruptcy prediction of financially stressed firms: an examination of the predictive accuracy of artificial neural networks," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 10(2), pages 69-81, June.
- Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Evi Neophytou & Cecilio Mar Molinero, 2004. "Predicting Corporate Failure in the UK: A Multidimensional Scaling Approach," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5-6), pages 677-710.
- Chris Charalambous & Andreas Charitou & Froso Kaourou, 2000. "Comparative Analysis of Artificial Neural Network Models: Application in Bankruptcy Prediction," Annals of Operations Research, Springer, vol. 99(1), pages 403-425, December.
- Patrick L. Brockett & Linda L. Golden & Jaeho Jang & Chuanhou Yang, 2006. "A Comparison of Neural Network, Statistical Methods, and Variable Choice for Life Insurers' Financial Distress Prediction," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(3), pages 397-419, September.
- Juliana Yim & Heather Mitchell, 2005. "A comparison of corporate distress prediction models in Brazil: hybrid neural networks, logit models and discriminant analysis," Nova Economia, Economics Department, Universidade Federal de Minas Gerais (Brazil), vol. 15(1), pages 73-93, January-A.
- Liang, Deron & Lu, Chia-Chi & Tsai, Chih-Fong & Shih, Guan-An, 2016. "Financial ratios and corporate governance indicators in bankruptcy prediction: A comprehensive study," European Journal of Operational Research, Elsevier, vol. 252(2), pages 561-572.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jarmila Horváthová & Martina Mokrišová & Martin Bača, 2023. "Bankruptcy Prediction for Sustainability of Businesses: The Application of Graph Theoretical Modeling," Mathematics, MDPI, vol. 11(24), pages 1-20, December.
- Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
- Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
- du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
- du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
- Layla Khoja & Maxwell Chipulu & Ranadeva Jayasekera, 2016. "Analysing corporate insolvency in the Gulf Cooperation Council using logistic regression and multidimensional scaling," Review of Quantitative Finance and Accounting, Springer, vol. 46(3), pages 483-518, April.
- Khoja, Layla & Chipulu, Maxwell & Jayasekera, Ranadeva, 2019. "Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data," International Review of Financial Analysis, Elsevier, vol. 66(C).
- Alessandra Amendola & Francesco Giordano & Maria Lucia Parrella & Marialuisa Restaino, 2017. "Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 355-368, August.
- Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.
- Balcaen, Sofie & Ooghe, Hubert, 2006.
"35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems,"
The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
- S. Balcaen & H. Ooghe, 2004. "35 years of studies on business failure: an overview of the classical statistical methodologiesand their related problems," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/248, Ghent University, Faculty of Economics and Business Administration.
- Juan García Lara & Beatriz Osma & Evi Neophytou, 2009. "Earnings quality in ex‐post failed firms," Accounting and Business Research, Taylor & Francis Journals, vol. 39(2), pages 119-138.
- Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
- du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
- Apostolos G. Christopoulos & Ioannis G. Dokas & Iraklis Kollias & John Leventides, 2019. "An implementation of Soft Set Theory in the Variables Selection Process for Corporate Failure Prediction Models. Evidence from NASDAQ Listed Firms," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 1-20.
- Sami Ben Jabeur & Youssef Fahmi, 2014. "Les modèles de prévision de la défaillance des entreprises françaises : une approche comparative," Working Papers 2014-317, Department of Research, Ipag Business School.
- Josep Patau & Antonio Somoza & Salvador Torra, 2020. "Diagnosis of the Domino Effect in Bankruptcy Situations Through Positioning Maps and Their Evolution 10 Years Later," SAGE Open, , vol. 10(4), pages 21582440209, December.
- Onofrei, Mihaela & Lupu, Dan, 2014. "The modelling of forecasting the bankruptcy in Romania," MPRA Paper 95511, University Library of Munich, Germany.
- du Jardin, Philippe & Séverin, Eric, 2010. "Dynamic analysis of the business failure process: A study of bankruptcy trajectories," MPRA Paper 44379, University Library of Munich, Germany.
- Tamás Kristóf & Miklós Virág, 2020. "A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary," JRFM, MDPI, vol. 13(2), pages 1-20, February.
- Mohammad Mahdi Mousavi & Jamal Ouenniche, 2018. "Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions," Annals of Operations Research, Springer, vol. 271(2), pages 853-886, December.
More about this item
Keywords
bankruptcy; insolvency; neural networks; machine learning; sustainable growth; financial analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:21:p:15304-:d:1267633. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.