IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1711-d932081.html
   My bibliography  Save this article

Development and Assessment of GIS-Based Landslide Susceptibility Mapping Models Using ANN, Fuzzy-AHP, and MCDA in Darjeeling Himalayas, West Bengal, India

Author

Listed:
  • Abhik Saha

    (Department of Mining Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India)

  • Vasanta Govind Kumar Villuri

    (Department of Mining Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India)

  • Ashutosh Bhardwaj

    (Photogrammetry and Remote Sensing Department, Indian Institute of Remote Sensing, 4, Kalidas Road, Dehradun 248001, India)

Abstract

Landslides, a natural hazard, can endanger human lives and gravely affect the environment. A landslide susceptibility map is required for managing, planning, and mitigating landslides to reduce damage. Various approaches are used to map landslide susceptibility, with varying degrees of efficacy depending on the methodology utilized in the research. An analytical hierarchy process (AHP), a fuzzy-AHP, and an artificial neural network (ANN) are utilized in the current study to construct maps of landslide susceptibility for a part of Darjeeling and Kurseong in West Bengal, India. On a landslide inventory map, 114 landslide sites were randomly split into training and testing with a 70:30 ratio. Slope, aspect, profile curvature, drainage density, lineament density, geomorphology, soil texture, land use and land cover, lithology, and rainfall were used as model inputs. The area under the curve (AUC) was used to examine the models. When tested for validation, the ANN prediction model performed best, with an AUC of 88.1%. AUC values for fuzzy-AHP and AHP are 86.1% and 85.4%, respectively. According to the statistics, the northeast and eastern portions of the study area are the most vulnerable. This map might help development in the area by preventing human and economic losses.

Suggested Citation

  • Abhik Saha & Vasanta Govind Kumar Villuri & Ashutosh Bhardwaj, 2022. "Development and Assessment of GIS-Based Landslide Susceptibility Mapping Models Using ANN, Fuzzy-AHP, and MCDA in Darjeeling Himalayas, West Bengal, India," Land, MDPI, vol. 11(10), pages 1-27, October.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1711-:d:932081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1711/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bakhtiar Feizizadeh & Thomas Blaschke, 2013. "GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 2105-2128, February.
    2. Viet-Ha Nhu & Ayub Mohammadi & Himan Shahabi & Baharin Bin Ahmad & Nadhir Al-Ansari & Ataollah Shirzadi & John J. Clague & Abolfazl Jaafari & Wei Chen & Hoang Nguyen, 2020. "Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment," IJERPH, MDPI, vol. 17(14), pages 1-23, July.
    3. Hariklia D. Skilodimou & George D. Bathrellos & Efterpi Koskeridou & Konstantinos Soukis & Dimitrios Rozos, 2018. "Physical and Anthropogenic Factors Related to Landslide Activity in the Northern Peloponnese, Greece," Land, MDPI, vol. 7(3), pages 1-18, July.
    4. Siti Norsakinah Selamat & Nuriah Abd Majid & Mohd Raihan Taha & Ashraf Osman, 2022. "Landslide Susceptibility Model Using Artificial Neural Network (ANN) Approach in Langat River Basin, Selangor, Malaysia," Land, MDPI, vol. 11(6), pages 1-21, June.
    5. Amit Bera & Bhabani Prasad Mukhopadhyay & Debasish Das, 2019. "Landslide hazard zonation mapping using multi-criteria analysis with the help of GIS techniques: a case study from Eastern Himalayas, Namchi, South Sikkim," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(2), pages 935-959, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianyu Yu & Yang Xia & Jianguo Zhou & Weiwei Jiang, 2023. "Landslide Susceptibility Mapping Based on Multitemporal Remote Sensing Image Change Detection and Multiexponential Band Math," Sustainability, MDPI, vol. 15(3), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li He & Xiantan Wu & Zhengwei He & Dongjian Xue & Fang Luo & Wenqian Bai & Guichuan Kang & Xin Chen & Yuxiang Zhang, 2023. "Susceptibility Assessment of Landslides in the Loess Plateau Based on Machine Learning Models: A Case Study of Xining City," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    2. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    3. Arunava Ray & Harshal Verma & Ashutosh Kumar Bharati & Rajesh Rai & Radhakanta Koner & Trilok Nath Singh, 2022. "Numerical modelling of rheological properties of landslide debris," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2303-2327, February.
    4. Samereh Pourmoradian & Ali Vandshoari & Davoud Omarzadeh & Ayyoob Sharifi & Naser Sanobuar & Seyyed Samad Hosseini, 2021. "An Integrated Approach to Assess Potential and Sustainability of Handmade Carpet Production in Different Areas of the East Azerbaijan Province of Iran," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    5. Tahir Ali Akbar & Siddique Ullah & Waheed Ullah & Rafi Ullah & Raja Umer Sajjad & Abdullah Mohamed & Alamgir Khalil & Muhammad Faisal Javed & Anwarud Din, 2022. "Development and Application of Models for Landslide Hazards in Northern Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-17, August.
    6. Bayes Ahmed, 2015. "Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox’s Bazar Municipality, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1707-1737, December.
    7. Israr Ullah & Bilal Aslam & Syed Hassan Iqbal Ahmad Shah & Aqil Tariq & Shujing Qin & Muhammad Majeed & Hans-Balder Havenith, 2022. "An Integrated Approach of Machine Learning, Remote Sensing, and GIS Data for the Landslide Susceptibility Mapping," Land, MDPI, vol. 11(8), pages 1-20, August.
    8. Aihua Wei & Duo Li & Yahong Zhou & Qinghai Deng & Liangdong Yan, 2021. "A novel combination approach for karst collapse susceptibility assessment using the analytic hierarchy process, catastrophe, and entropy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 405-430, January.
    9. Hariklia D. Skilodimou & George D. Bathrellos, 2021. "Natural and Technological Hazards in Urban Areas: Assessment, Planning and Solutions," Sustainability, MDPI, vol. 13(15), pages 1-5, July.
    10. Siti Norsakinah Selamat & Nuriah Abd Majid & Aizat Mohd Taib, 2023. "A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-21, January.
    11. Senapati, Ujjal & Das, Tapan Kumar, 2024. "Delineation of potential alternative agriculture region using RS and AHP-based GIS techniques in the drought prone upper Dwarakeswer river basin, West Bengal, India," Ecological Modelling, Elsevier, vol. 490(C).
    12. Showmitra Kumar Sarkar & Saifullah Bin Ansar & Khondaker Mohammed Mohiuddin Ekram & Mehedi Hasan Khan & Swapan Talukdar & Mohd Waseem Naikoo & Abu Reza Towfiqul Islam & Atiqur Rahman & Amir Mosavi, 2022. "Developing Robust Flood Susceptibility Model with Small Numbers of Parameters in Highly Fertile Regions of Northwest Bangladesh for Sustainable Flood and Agriculture Management," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    13. Sankar Kumar Nath & Arnab Sengupta & Anand Srivastava, 2021. "Remote sensing GIS-based landslide susceptibility & risk modeling in Darjeeling–Sikkim Himalaya together with FEM-based slope stability analysis of the terrain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 3271-3304, September.
    14. Seyed Vahid Razavi-Termeh & Abolghasem Sadeghi-Niaraki & Farbod Farhangi & Soo-Mi Choi, 2021. "COVID-19 Risk Mapping with Considering Socio-Economic Criteria Using Machine Learning Algorithms," IJERPH, MDPI, vol. 18(18), pages 1-21, September.
    15. Syaidatul Azwani Zulkafli & Nuriah Abd Majid & Ruslan Rainis, 2023. "Spatial Analysis on the Variances of Landslide Factors Using Geographically Weighted Logistic Regression in Penang Island, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-26, January.
    16. Bangjie Fu & Yange Li & Zheng Han & Zhenxiong Fang & Ningsheng Chen & Guisheng Hu & Weidong Wang, 2023. "RIPF-Unet for regional landslides detection: a novel deep learning model boosted by reversed image pyramid features," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 701-719, October.
    17. Arthur Lehner & Christoph Erlacher & Matthias Schlögl & Jacob Wegerer & Thomas Blaschke & Klaus Steinnocher, 2018. "Can ISO-Defined Urban Sustainability Indicators Be Derived from Remote Sensing: An Expert Weighting Approach," Sustainability, MDPI, vol. 10(4), pages 1-31, April.
    18. Parviz Mohamadzadeh & Samereh Pourmoradian & Bakhtiar Feizizadeh & Ayyoob Sharifi & Mathias Vogdrup-Schmidt, 2020. "A GIS-Based Approach for Spatially-Explicit Sustainable Development Assessments in East Azerbaijan Province, Iran," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    19. Saeedeh Eskandari & Mahdis Amiri & Nitheshnirmal Sãdhasivam & Hamid Reza Pourghasemi, 2020. "Comparison of new individual and hybrid machine learning algorithms for modeling and mapping fire hazard: a supplementary analysis of fire hazard in different counties of Golestan Province in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 305-327, October.
    20. Youssef Almulla & Camilo Ramirez & Konstantinos Pegios & Alexandros Korkovelos & Lucia de Strasser & Annukka Lipponen & Mark Howells, 2020. "A GIS-Based Approach to Inform Agriculture-Water-Energy Nexus Planning in the North Western Sahara Aquifer System (NWSAS)," Sustainability, MDPI, vol. 12(17), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1711-:d:932081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.