IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v73y2014i2p727-741.html
   My bibliography  Save this article

Overexploitation status of groundwater and induced geological hazards in China

Author

Listed:
  • F. Huang
  • G. Wang
  • Y. Yang
  • C. Wang

Abstract

During the process of urbanization and industrialization, groundwater has been extensively overexploited, with the direct result of continuously decreasing groundwater level, followed by the appearance of large scale of depression cones, which is furthermore followed by land subsidence, seawater intrusion, and increasing difficulties in subsequent groundwater exploitation. This paper makes an analysis on the geological disasters caused by overexploitation of groundwater. The consumption and overexploitation status of groundwater in representative regions in China is discussed first, with the distribution and development of depression cones elaborated the next. And the problems of land subsidence, seawater intrusion, and increasing difficulties caused by overexploitation of groundwater are analyzed at last. Results show that overexploitation of groundwater is positively related to economic development. Moreover, geological disasters such as land subsidence and seawater intrusion caused by long term of overexploitation also aggregate, posing threats, and losses to people’s lives and production. According to the analysis, the fundamental resolution for overexploitation of groundwater as well as consequential geological damages is to properly control city size and to utilize groundwater rationally and efficiently. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • F. Huang & G. Wang & Y. Yang & C. Wang, 2014. "Overexploitation status of groundwater and induced geological hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 727-741, September.
  • Handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:727-741
    DOI: 10.1007/s11069-014-1102-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1102-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1102-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Zhou & S. Zhao, 2013. "Urbanization process and induced environmental geological hazards in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 67(2), pages 797-810, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rencai Dong & Yue Cai & Xueye Chen & Cunjin Wang & Anxin Lian, 2024. "Ecological Risk Assessment of Saltwater Intrusion and Urban Ecosystem Management in Shenzhen City," Land, MDPI, vol. 13(9), pages 1-16, August.
    2. Wang, Bo & van Dam, Jos & Yang, Xiaolin & Ritsema, Coen & Du, Taisheng & Kang, Shaozhong, 2023. "Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain," Agricultural Water Management, Elsevier, vol. 280(C).
    3. Liang, Hao & Qin, Wei & Hu, Kelin & Tao, Hongbing & Li, Baoguo, 2019. "Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 732-741.
    4. Wang, Shuping & Tan, Qian & Zhang, Tianyuan & Zhang, Tong, 2022. "Water management policy analysis: Insight from a calibration-based inexact programming method," Agricultural Water Management, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussam Al-Bilbisi, 2019. "Spatial Monitoring of Urban Expansion Using Satellite Remote Sensing Images: A Case Study of Amman City, Jordan," Sustainability, MDPI, vol. 11(8), pages 1-14, April.
    2. Liang, Hao & Qin, Wei & Hu, Kelin & Tao, Hongbing & Li, Baoguo, 2019. "Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain," Agricultural Water Management, Elsevier, vol. 213(C), pages 732-741.
    3. Lamek Nahayo & Cui Peng & Yu Lei & Rongzhi Tan, 2023. "Spatial understanding of historical and future landslide variation in Africa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 613-641, October.
    4. Chi Yang & Jinghan Wang & Shuyi Li & Ruihan Xiong & Xiaobo Li & Lin Gao & Xu Guo & Chuanming Ma & Hanxiang Xiong & Yang Qiu, 2024. "Landslide Susceptibility Assessment and Future Prediction with Land Use Change and Urbanization towards Sustainable Development: The Case of the Li River Valley in Yongding, China," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    5. Jia Xu & Makoto Takahashi, 2021. "Urban Marginalization and the Declining Capacity for Disaster Risks in Contemporary China," Social Sciences, MDPI, vol. 10(11), pages 1-16, November.
    6. Shuai Li & Zhongyun Ni & Yinbing Zhao & Wei Hu & Zhenrui Long & Haiyu Ma & Guoli Zhou & Yuhao Luo & Chuntao Geng, 2022. "Susceptibility Analysis of Geohazards in the Longmen Mountain Region after the Wenchuan Earthquake," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    7. Keming Huang & Fangzhou Xia, 2023. "Classification of Rural Relative Poverty Groups and Measurement of the Influence of Land Elements: A Questionnaire-Based Analysis of 23 Poor Counties in China," Land, MDPI, vol. 12(4), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:73:y:2014:i:2:p:727-741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.