IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i14p4933-d382054.html
   My bibliography  Save this article

Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment

Author

Listed:
  • Viet-Ha Nhu

    (Geographic Information Science Research Group, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
    Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam)

  • Ayub Mohammadi

    (Department of Remote Sensing and GIS, University of Tabriz, Tabriz 51666-16471, Iran)

  • Himan Shahabi

    (Department of Geomorphology, Faculty of Natural Resources, University of Kurdistan, Sanandaj 66177-15175, Iran
    Board Member of Department of Zrebar Lake Environmental Research, Kurdistan Studies Institute, University of Kurdistan, Sanandaj 66177-15175, Iran)

  • Baharin Bin Ahmad

    (Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia)

  • Nadhir Al-Ansari

    (Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 971 87 Lulea, Sweden)

  • Ataollah Shirzadi

    (Department of Rangeland and Watershed Management, Faculty of Natural Resources, University of Kurdistan, Sanandaj 66177-15175, Iran)

  • John J. Clague

    (Department of Earth Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada)

  • Abolfazl Jaafari

    (Research Institute of Forests and Rangelands, Agricultural Research, Education, and Extension Organization (AREEO), Tehran P.O. Box 64414-356, Iran)

  • Wei Chen

    (College of Geology & Environment, Xi’an University of Science and Technology, Xi’an 710054, China
    Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi’an 710021, Shaanxi, China)

  • Hoang Nguyen

    (Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam)

Abstract

We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.

Suggested Citation

  • Viet-Ha Nhu & Ayub Mohammadi & Himan Shahabi & Baharin Bin Ahmad & Nadhir Al-Ansari & Ataollah Shirzadi & John J. Clague & Abolfazl Jaafari & Wei Chen & Hoang Nguyen, 2020. "Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment," IJERPH, MDPI, vol. 17(14), pages 1-23, July.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:4933-:d:382054
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/14/4933/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/14/4933/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binh Thai Pham & Ataollah Shirzadi & Himan Shahabi & Ebrahim Omidvar & Sushant K. Singh & Mehebub Sahana & Dawood Talebpour Asl & Baharin Bin Ahmad & Nguyen Kim Quoc & Saro Lee, 2019. "Landslide Susceptibility Assessment by Novel Hybrid Machine Learning Algorithms," Sustainability, MDPI, vol. 11(16), pages 1-25, August.
    2. Himan Shahabi & Mamand Salari & Baharin Bin Ahmad & Ayub Mohammadi, 2016. "Soil Erosion Hazard Mapping in Central Zab Basin Using Epm Model in GIS Environment," International Journal of Geography and Geology, Conscientia Beam, vol. 5(11), pages 224-235.
    3. Haoyuan Hong & Himan Shahabi & Ataollah Shirzadi & Wei Chen & Kamran Chapi & Baharin Bin Ahmad & Majid Shadman Roodposhti & Arastoo Yari Hesar & Yingying Tian & Dieu Tien Bui, 2019. "Landslide susceptibility assessment at the Wuning area, China: a comparison between multi-criteria decision making, bivariate statistical and machine learning methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 173-212, March.
    4. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    5. Saeid Janizadeh & Mohammadtaghi Avand & Abolfazl Jaafari & Tran Van Phong & Mahmoud Bayat & Ebrahim Ahmadisharaf & Indra Prakash & Binh Thai Pham & Saro Lee, 2019. "Prediction Success of Machine Learning Methods for Flash Flood Susceptibility Mapping in the Tafresh Watershed, Iran," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    6. Dieu Tien Bui & Ataollah Shirzadi & Ata Amini & Himan Shahabi & Nadhir Al-Ansari & Shahriar Hamidi & Sushant K. Singh & Binh Thai Pham & Baharin Bin Ahmad & Pezhman Taherei Ghazvinei, 2020. "A Hybrid Intelligence Approach to Enhance the Prediction Accuracy of Local Scour Depth at Complex Bridge Piers," Sustainability, MDPI, vol. 12(3), pages 1-24, February.
    7. Ataollah Shirzadi & Lee Saro & Oh Hyun Joo & Kamran Chapi, 2012. "A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1639-1656, November.
    8. Himan Shahabi & Mamand Salari & Baharin Bin Ahmad & Ayub Mohammadi, 2016. "Soil Erosion Hazard Mapping in Central Zab Basin Using Epm Model in GIS Environment," International Journal of Geography and Geology, Conscientia Beam, vol. 5(11), pages 224-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Li & Zhongyun Ni & Yinbing Zhao & Wei Hu & Zhenrui Long & Haiyu Ma & Guoli Zhou & Yuhao Luo & Chuntao Geng, 2022. "Susceptibility Analysis of Geohazards in the Longmen Mountain Region after the Wenchuan Earthquake," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    2. Abhik Saha & Vasanta Govind Kumar Villuri & Ashutosh Bhardwaj, 2022. "Development and Assessment of GIS-Based Landslide Susceptibility Mapping Models Using ANN, Fuzzy-AHP, and MCDA in Darjeeling Himalayas, West Bengal, India," Land, MDPI, vol. 11(10), pages 1-27, October.
    3. Patricia Arrogante-Funes & Adrián G. Bruzón & Fátima Arrogante-Funes & Rocío N. Ramos-Bernal & René Vázquez-Jiménez, 2021. "Integration of Vulnerability and Hazard Factors for Landslide Risk Assessment," IJERPH, MDPI, vol. 18(22), pages 1-21, November.
    4. Sheela Bhuvanendran Bhagya & Anita Saji Sumi & Sankaran Balaji & Jean Homian Danumah & Romulus Costache & Ambujendran Rajaneesh & Ajayakumar Gokul & Chandini Padmanabhapanicker Chandrasenan & Renata P, 2023. "Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps," Land, MDPI, vol. 12(2), pages 1-29, February.
    5. Seyed Vahid Razavi-Termeh & Abolghasem Sadeghi-Niaraki & Farbod Farhangi & Soo-Mi Choi, 2021. "COVID-19 Risk Mapping with Considering Socio-Economic Criteria Using Machine Learning Algorithms," IJERPH, MDPI, vol. 18(18), pages 1-21, September.
    6. Bangjie Fu & Yange Li & Zheng Han & Zhenxiong Fang & Ningsheng Chen & Guisheng Hu & Weidong Wang, 2023. "RIPF-Unet for regional landslides detection: a novel deep learning model boosted by reversed image pyramid features," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 701-719, October.
    7. Uzodigwe Emmanuel Nnanwuba & Shengwu Qin & Oluwafemi Adewole Adeyeye & Ndichie Chinemelu Cosmas & Jingyu Yao & Shuangshuang Qiao & Sun Jingbo & Ekene Mathew Egwuonwu, 2022. "Prediction of Spatial Likelihood of Shallow Landslide Using GIS-Based Machine Learning in Awgu, Southeast/Nigeria," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    8. Purna Bahadur Thapa & Saurav Lamichhane & Khagendra Prasad Joshi & Aayoush Raj Regmi & Divya Bhattarai & Hari Adhikari, 2023. "Landslide Susceptibility Assessment in Nepal’s Chure Region: A Geospatial Analysis," Land, MDPI, vol. 12(12), pages 1-20, December.
    9. Siti Norsakinah Selamat & Nuriah Abd Majid & Aizat Mohd Taib, 2023. "A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    2. Viet-Tien Nguyen & Trong Hien Tran & Ngoc Anh Ha & Van Liem Ngo & Al-Ansari Nadhir & Van Phong Tran & Huu Duy Nguyen & Malek M. A. & Ata Amini & Indra Prakash & Lanh Si Ho & Binh Thai Pham, 2019. "GIS Based Novel Hybrid Computational Intelligence Models for Mapping Landslide Susceptibility: A Case Study at Da Lat City, Vietnam," Sustainability, MDPI, vol. 11(24), pages 1-24, December.
    3. Jiangping Gao & Xiangyang Shi & Linghui Li & Ziqiang Zhou & Junfeng Wang, 2022. "Assessment of Landslide Susceptibility Using Different Machine Learning Methods in Longnan City, China," Sustainability, MDPI, vol. 14(24), pages 1-26, December.
    4. Hyung-Sup Jung & Saro Lee & Biswajeet Pradhan, 2020. "Sustainable Applications of Remote Sensing and Geospatial Information Systems to Earth Observations," Sustainability, MDPI, vol. 12(6), pages 1-6, March.
    5. Phong Tung Nguyen & Duong Hai Ha & Abolfazl Jaafari & Huu Duy Nguyen & Tran Van Phong & Nadhir Al-Ansari & Indra Prakash & Hiep Van Le & Binh Thai Pham, 2020. "Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-20, April.
    6. Phong Tung Nguyen & Duong Hai Ha & Huu Duy Nguyen & Tran Van Phong & Phan Trong Trinh & Nadhir Al-Ansari & Hiep Van Le & Binh Thai Pham & Lanh Si Ho & Indra Prakash, 2020. "Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling," Sustainability, MDPI, vol. 12(7), pages 1-28, March.
    7. Henrich Grežo & Matej Močko & Martin Izsóff & Gréta Vrbičanová & František Petrovič & Jozef Straňák & Zlatica Muchová & Martina Slámová & Branislav Olah & Ivo Machar, 2020. "Flood Risk Assessment for the Long-Term Strategic Planning Considering the Placement of Industrial Parks in Slovakia," Sustainability, MDPI, vol. 12(10), pages 1-20, May.
    8. Binh Thai Pham & Chongchong Qi & Lanh Si Ho & Trung Nguyen-Thoi & Nadhir Al-Ansari & Manh Duc Nguyen & Huu Duy Nguyen & Hai-Bang Ly & Hiep Van Le & Indra Prakash, 2020. "A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    9. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    10. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    11. Liu, Qiang & Huang, Delong & Zhang, Bin & Tang, Aiping & Xu, Xiuchen, 2024. "Developing a probability-based technique to improve the measurement of landslide vulnerability on regional roads," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    12. Mohamed Abdelkareem & Abbas M. Mansour, 2023. "Risk assessment and management of vulnerable areas to flash flood hazards in arid regions using remote sensing and GIS-based knowledge-driven techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2269-2295, July.
    13. Naseem Ahmad & Muhammad Shafique & Mian Luqman Hussain & Fakhrul Islam & Aqil Tariq & Walid Soufan, 2024. "Characterization and Geomorphic Change Detection of Landslides Using UAV Multi-Temporal Imagery in the Himalayas, Pakistan," Land, MDPI, vol. 13(7), pages 1-28, June.
    14. Neslihan Beden & Nazire Göksu Soydan-Oksal & Sema Arıman & Hayatullah Ahmadzai, 2023. "Delineation of a Groundwater Potential Zone Map for the Kızılırmak Delta by Using Remote-Sensing-Based Geospatial and Analytical Hierarchy Processes," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    15. Yehui Zhu & Liquan Xie & Tsung-Chow Su, 2020. "Scour Protection Effects of a Geotextile Mattress with Floating Plate on a Pipeline," Sustainability, MDPI, vol. 12(8), pages 1-13, April.
    16. Fabio Di Nunno & Francesco Granata & Quoc Bao Pham & Giovanni de Marinis, 2022. "Precipitation Forecasting in Northern Bangladesh Using a Hybrid Machine Learning Model," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    17. P. Santi & J. Manning & W. Zhou & P. Meza & P. Colque, 2021. "Geologic hazards of the Ocoña river valley, Peru and the influence of small-scale mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(3), pages 2679-2700, September.
    18. Saeid Janizadeh & Mehdi Vafakhah & Zoran Kapelan & Naghmeh Mobarghaee Dinan, 2021. "Novel Bayesian Additive Regression Tree Methodology for Flood Susceptibility Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4621-4646, October.
    19. Youssef El Miloudi & Younes El Kharim & Ali Bounab & Rachid El Hamdouni, 2024. "Effect of Rockfall Spatial Representation on the Accuracy and Reliability of Susceptibility Models (The Case of the Haouz Dorsale Calcaire, Morocco)," Land, MDPI, vol. 13(2), pages 1-16, February.
    20. Jeong-Cheol Kim & Sunmin Lee, 2023. "Comparative Study of Deep Neural Networks for Landslide Susceptibility Assessment: A Case Study of Pyeongchang-gun, South Korea," Sustainability, MDPI, vol. 16(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:14:p:4933-:d:382054. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.