IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2409-d859394.html
   My bibliography  Save this article

Research on Maximum Likelihood b Value and Confidence Limits Estimation in Doubly Truncated Apparent Frequency–Amplitude Distribution in Rock Acoustic Emission Tests

Author

Listed:
  • Changgen Xia

    (School of Resources and Safety Engineering, Central South University, Changsha 410008, China
    State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China)

  • Daolong Chen

    (School of Resources and Safety Engineering, Central South University, Changsha 410008, China)

  • Wei He

    (School of Mathematics and Statistics, Central South University, Changsha 410008, China)

  • Huini Liu

    (School of Resources and Safety Engineering, Central South University, Changsha 410008, China)

  • Xiling Liu

    (School of Resources and Safety Engineering, Central South University, Changsha 410008, China
    State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

The b value deduced from the Gutenberg–Richter law is an important parameter for sequence and precursory analyses, both in laboratory acoustic emission tests and seismology. As the b value is a statistical value, the maximum likelihood estimation is mostly used to estimate the b value. However, traditional singly truncated maximum likelihood estimation in seismology only considers the minimum magnitude, while the acquisition device in rock acoustic emission tests will set the threshold value and maximum value of the amplitude; therefore, maximum likelihood estimation will estimate the b value in a doubly truncated size distribution, and its confidence limits need to be discussed. Here, in this study, we derive the calculation equations of the b value and the corresponding confidence limits for the maximum likelihood estimation with a narrow amplitude span in a doubly truncated frequency–amplitude distribution. The maximum likelihood b values estimated by the scheme of a singly and doubly truncated frequency–amplitude distribution are compared through acoustic emission data with the known underlying distribution. The results show that the maximum likelihood b value and confidence limits estimation scheme derived for rock acoustic emission tests with a narrow amplitude span is more reasonable. Then, the derived estimation scheme is applied to the rock dilation rupturing test; the results confirm its applicability.

Suggested Citation

  • Changgen Xia & Daolong Chen & Wei He & Huini Liu & Xiling Liu, 2022. "Research on Maximum Likelihood b Value and Confidence Limits Estimation in Doubly Truncated Apparent Frequency–Amplitude Distribution in Rock Acoustic Emission Tests," Mathematics, MDPI, vol. 10(14), pages 1-13, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2409-:d:859394
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2409/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Longjun Dong & Lingyun Zhang & Huini Liu & Kun Du & Xiling Liu, 2022. "Acoustic Emission b Value Characteristics of Granite under True Triaxial Stress," Mathematics, MDPI, vol. 10(3), pages 1-16, January.
    2. Jun Yang & Jinhong Chen & Huiliang Liu & Jingchen Zheng, 2014. "Comparison of two large earthquakes in China: the 2008 Sichuan Wenchuan Earthquake and the 2013 Sichuan Lushan Earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 1127-1136, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sutapa Chaudhuri & Arumita Roy Chowdhury & Payel Das, 2018. "Implementation of Sugeno: ANFIS for forecasting the seismic moment of large earthquakes over Indo-Himalayan region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 391-405, January.
    2. Yen-Yu Chiu & Hiroshi Omura & Hung-En Chen & Su-Chin Chen, 2020. "Indicators for Post-Disaster Search and Rescue Efficiency Developed Using Progressive Death Tolls," Sustainability, MDPI, vol. 12(19), pages 1-14, October.
    3. Testa, Patrick A., 2021. "Shocks and the spatial distribution of economic activity: The role of institutions," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 791-810.
    4. Shaofeng Wang & Xin Cai & Jian Zhou & Zhengyang Song & Xiaofeng Li, 2022. "Analytical, Numerical and Big-Data-Based Methods in Deep Rock Mechanics," Mathematics, MDPI, vol. 10(18), pages 1-5, September.
    5. Xin He & Jidong Wu & Cailin Wang & Mengqi Ye, 2018. "Historical Earthquakes and Their Socioeconomic Consequences in China: 1950–2017," IJERPH, MDPI, vol. 15(12), pages 1-15, December.
    6. Qinghe Zhang & Weiguo Li & Liang Yuan & Tianle Zheng & Zhiwei Liang & Xiaorui Wang, 2024. "A review of tunnel rockburst prediction methods based on static and dynamic indicators," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10465-10512, September.
    7. Qiang Zhang & Qibin Lu & Yameng Hu & Jocelyn Lau, 2015. "What constrained disaster management capacity in the township level of China? Case studies of Wenchuan and Lushan earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1915-1938, July.
    8. Shuai Li & Zhongyun Ni & Yinbing Zhao & Wei Hu & Zhenrui Long & Haiyu Ma & Guoli Zhou & Yuhao Luo & Chuntao Geng, 2022. "Susceptibility Analysis of Geohazards in the Longmen Mountain Region after the Wenchuan Earthquake," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    9. Daolong Chen & Changgen Xia & Huini Liu & Xiling Liu & Kun Du, 2022. "Research on b Value Estimation Based on Apparent Amplitude-Frequency Distribution in Rock Acoustic Emission Tests," Mathematics, MDPI, vol. 10(17), pages 1-17, September.
    10. Xuanhua Xu & Yanxia Huang & Ke Chen, 2019. "Method for large group emergency decision making with complex preferences based on emergency similarity and interval consistency," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 45-64, May.
    11. Jelena M. Andrić & Da-Gang Lu, 2017. "Fuzzy probabilistic seismic hazard analysis with applications to Kunming city, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1031-1057, December.
    12. Weiguang Ren & Chaosheng Wang & Yang Zhao & Dongjie Xue, 2023. "Research on Precursor Information of Brittle Rock Failure through Acoustic Emission," Mathematics, MDPI, vol. 11(19), pages 1-16, October.
    13. Joseph Kimuli Balikuddembe & Xinglin Zeng & Chuandong Chen, 2020. "Health-Related Rehabilitation after the 2008 Great Wenchuan Earthquake in China: A Ten Year Retrospective Systematic Review," IJERPH, MDPI, vol. 17(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2409-:d:859394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.