IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i3p368-d201469.html
   My bibliography  Save this article

Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China

Author

Listed:
  • Yumiao Wang

    (School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China)

  • Xueling Wu

    (Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China)

  • Zhangjian Chen

    (Zhejiang Academy of Surveying and Mapping, Hangzhou 310012, China)

  • Fu Ren

    (School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China
    Key Laboratory of GIS, Ministry of Education, Wuhan University, Wuhan 430079, China
    Key Laboratory of Digital Mapping and Land Information Application Engineering, National Administration of Surveying, Mapping and Geoinformation, Wuhan University, Wuhan 430079, China)

  • Luwei Feng

    (School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China)

  • Qingyun Du

    (School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China
    Key Laboratory of GIS, Ministry of Education, Wuhan University, Wuhan 430079, China
    Key Laboratory of Digital Mapping and Land Information Application Engineering, National Administration of Surveying, Mapping and Geoinformation, Wuhan University, Wuhan 430079, China
    Collaborative Innovation Center of Geospatial Technology, Wuhan University, Wuhan 430079, China)

Abstract

The main goal of this study was to use the synthetic minority oversampling technique (SMOTE) to expand the quantity of landslide samples for machine learning methods (i.e., support vector machine (SVM), logistic regression (LR), artificial neural network (ANN), and random forest (RF)) to produce high-quality landslide susceptibility maps for Lishui City in Zhejiang Province, China. Landslide-related factors were extracted from topographic maps, geological maps, and satellite images. Twelve factors were selected as independent variables using correlation coefficient analysis and the neighborhood rough set (NRS) method. In total, 288 soil landslides were mapped using field surveys, historical records, and satellite images. The landslides were randomly divided into two datasets: 70% of all landslides were selected as the original training dataset and 30% were used for validation. Then, SMOTE was employed to generate datasets with sizes ranging from two to thirty times that of the training dataset to establish and compare the four machine learning methods for landslide susceptibility mapping. In addition, we used slope units to subdivide the terrain to determine the landslide susceptibility. Finally, the landslide susceptibility maps were validated using statistical indexes and the area under the curve (AUC). The results indicated that the performances of the four machine learning methods showed different levels of improvement as the sample sizes increased. The RF model exhibited a more substantial improvement (AUC improved by 24.12%) than did the ANN (18.94%), SVM (17.77%), and LR (3.00%) models. Furthermore, the ANN model achieved the highest predictive ability (AUC = 0.98), followed by the RF (AUC = 0.96), SVM (AUC = 0.94), and LR (AUC = 0.79) models. This approach significantly improves the performance of machine learning techniques for landslide susceptibility mapping, thereby providing a better tool for reducing the impacts of landslide disasters.

Suggested Citation

  • Yumiao Wang & Xueling Wu & Zhangjian Chen & Fu Ren & Luwei Feng & Qingyun Du, 2019. "Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China," IJERPH, MDPI, vol. 16(3), pages 1-27, January.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:368-:d:201469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/3/368/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/3/368/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xianyu Yu & Yi Wang & Ruiqing Niu & Youjian Hu, 2016. "A Combination of Geographically Weighted Regression, Particle Swarm Optimization and Support Vector Machine for Landslide Susceptibility Mapping: A Case Study at Wanzhou in the Three Gorges Area, Chin," IJERPH, MDPI, vol. 13(5), pages 1-35, May.
    2. Baofeng Di & Constantine A. Stamatopoulos & Miranda Dandoulaki & Eleni Stavrogiannopoulou & Meng Zhang & Persefoni Bampina, 2017. "A method predicting the earthquake-induced landslide risk by back analyses of past landslides and its application in the region of the Wenchuan 12/5/2008 earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 903-927, January.
    3. Paraskevas Tsangaratos & Andreas Benardos, 2014. "Estimating landslide susceptibility through a artificial neural network classifier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1489-1516, December.
    4. Metehan Ada & B. Taner San, 2018. "Comparison of machine-learning techniques for landslide susceptibility mapping using two-level random sampling (2LRS) in Alakir catchment area, Antalya, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 237-263, January.
    5. Zhaohua Chen & Jinfei Wang, 2007. "Landslide hazard mapping using logistic regression model in Mackenzie Valley, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 75-89, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junjie Ji & Yongzhang Zhou & Qiuming Cheng & Shoujun Jiang & Shiting Liu, 2023. "Landslide Susceptibility Mapping Based on Deep Learning Algorithms Using Information Value Analysis Optimization," Land, MDPI, vol. 12(6), pages 1-22, May.
    2. Yue Wang & Deliang Sun & Haijia Wen & Hong Zhang & Fengtai Zhang, 2020. "Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China)," IJERPH, MDPI, vol. 17(12), pages 1-39, June.
    3. Martin Kuradusenge & Santhi Kumaran & Marco Zennaro, 2020. "Rainfall-Induced Landslide Prediction Using Machine Learning Models: The Case of Ngororero District, Rwanda," IJERPH, MDPI, vol. 17(11), pages 1-20, June.
    4. Ying-Jen Chang & Kuo-Chuan Hung & Li-Kai Wang & Chia-Hung Yu & Chao-Kun Chen & Hung-Tze Tay & Jhi-Joung Wang & Chung-Feng Liu, 2021. "A Real-Time Artificial Intelligence-Assisted System to Predict Weaning from Ventilator Immediately after Lung Resection Surgery," IJERPH, MDPI, vol. 18(5), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
    2. Arezoo Mokhtari & Behnam Tashayo & Kaveh Deilami, 2021. "Implications of Nonstationary Effect on Geographically Weighted Total Least Squares Regression for PM 2.5 Estimation," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    3. Netra Bhandary & Ranjan Dahal & Manita Timilsina & Ryuichi Yatabe, 2013. "Rainfall event-based landslide susceptibility zonation mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 365-388, October.
    4. Vahedberdi Sheikh & Aiding Kornejady & Majid Ownegh, 2019. "Application of the coupled TOPSIS–Mahalanobis distance for multi-hazard-based management of the target districts of the Golestan Province, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1335-1365, April.
    5. Halil Akinci & Mustafa Zeybek, 2021. "Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1515-1543, September.
    6. Min-Yuan Cheng & Nhat-Duc Hoang, 2015. "Typhoon-induced slope collapse assessment using a novel bee colony optimized support vector classifier," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1961-1978, September.
    7. Xianyu Yu & Tingting Xiong & Weiwei Jiang & Jianguo Zhou, 2023. "Comparative Assessment of the Efficacy of the Five Kinds of Models in Landslide Susceptibility Map for Factor Screening: A Case Study at Zigui-Badong in the Three Gorges Reservoir Area, China," Sustainability, MDPI, vol. 15(1), pages 1-26, January.
    8. Zhiheng Wang & Dongchuan Wang & Qiaozhen Guo & Daikun Wang, 2020. "Regional landslide hazard assessment through integrating susceptibility index and rainfall process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2153-2173, December.
    9. M. Ponziani & D. Ponziani & A. Giorgi & H. Stevenin & S. M. Ratto, 2023. "The use of machine learning techniques for a predictive model of debris flows triggered by short intense rainfall," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 143-162, May.
    10. Gao Hua-xi & Yin Kun-long, 2014. "Study on spatial prediction and time forecast of landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1735-1748, February.
    11. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    12. Shuai Li & Zhongyun Ni & Yinbing Zhao & Wei Hu & Zhenrui Long & Haiyu Ma & Guoli Zhou & Yuhao Luo & Chuntao Geng, 2022. "Susceptibility Analysis of Geohazards in the Longmen Mountain Region after the Wenchuan Earthquake," IJERPH, MDPI, vol. 19(6), pages 1-30, March.
    13. Deborah Simon Mwakapesa & Yimin Mao & Xiaoji Lan & Yaser Ahangari Nanehkaran, 2023. "Landslide Susceptibility Mapping Using DIvisive ANAlysis (DIANA) and RObust Clustering Using linKs (ROCK) Algorithms, and Comparison of Their Performance," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    14. Christos Polykretis & Christos Chalkias, 2018. "Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 249-274, August.
    15. Jie Dou & Ali P. Yunus & Yueren Xu & Zhongfan Zhu & Chi-Wen Chen & Mehebub Sahana & Khabat Khosravi & Yong Yang & Binh Thai Pham, 2019. "Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 579-609, June.
    16. Yongchao Li & Jianping Chen & Chun Tan & Yang Li & Feifan Gu & Yiwei Zhang & Qaiser Mehmood, 2021. "Application of the borderline-SMOTE method in susceptibility assessments of debris flows in Pinggu District, Beijing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 2499-2522, February.
    17. Xianyu Yu & Yang Xia & Jianguo Zhou & Weiwei Jiang, 2023. "Landslide Susceptibility Mapping Based on Multitemporal Remote Sensing Image Change Detection and Multiexponential Band Math," Sustainability, MDPI, vol. 15(3), pages 1-29, January.
    18. Cahio Guimarães Seabra Eiras & Juliana Ribeiro Gonçalves de Souza & Renata Delicio Andrade de Freitas & César Falcão Barella & Tiago Martins Pereira, 2021. "Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1427-1442, June.
    19. Binh Thai Pham & Dieu Tien Bui & Indra Prakash & M. B. Dholakia, 2016. "Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 97-127, August.
    20. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:3:p:368-:d:201469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.