IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i4p2318-d751875.html
   My bibliography  Save this article

Analyzing the Freight Characteristics and Carbon Emission of Construction Waste Hauling Trucks: Big Data Analytics of Hong Kong

Author

Listed:
  • Xiaoxuan Wei

    (School of Management Science and Real Estate, International Research Center for Sustainable Built Environment, Chongqing University, Chongqing 400045, China
    Department of Real Estate and Construction, The University of Hong Kong, Pokfulam Rd, Hong Kong, China)

  • Meng Ye

    (School of Economics and Management, Southwest Jiaotong University, Chengdu 610000, China)

  • Liang Yuan

    (Department of Real Estate and Construction, The University of Hong Kong, Pokfulam Rd, Hong Kong, China)

  • Wei Bi

    (Department of Real Estate and Construction, The University of Hong Kong, Pokfulam Rd, Hong Kong, China)

  • Weisheng Lu

    (Department of Real Estate and Construction, The University of Hong Kong, Pokfulam Rd, Hong Kong, China)

Abstract

Unlike their counterparts that are used for container or municipal solid waste hauling, or their peers of taxies and other commercial vehicles, construction waste hauling trucks (CWHTs) are heterogeneous in that they transport construction waste from construction sites to designated disposal facilities. Depending on the intensity of the construction activities, there are many CWHTs in operation, imposing massive impacts on a region’s transportation system and natural environment. However, such impacts have rarely been documented. This paper has analyzed CWHTs’ freight characteristics and their carbon emission by harnessing a big dataset of 112,942 construction waste transport trips in Hong Kong in May 2015. It has been observed that CWHTs generate 4544 daily trips with 307.64 tons CO 2 -eq emitted on working days, and 553 daily trips emitting 28.78 tons CO 2 -eq on non-working days. Freight carbon emission has been found to be related to the vehicle type, transporting weight, and trip length, while the trip length is the most influential metric to carbon emission. This research contributes to the understanding of freight characteristics by exploiting a valuable big dataset and providing important benchmarking metrics for monitoring the effectiveness of policy interventions related to construction waste transportation planning and carbon emission.

Suggested Citation

  • Xiaoxuan Wei & Meng Ye & Liang Yuan & Wei Bi & Weisheng Lu, 2022. "Analyzing the Freight Characteristics and Carbon Emission of Construction Waste Hauling Trucks: Big Data Analytics of Hong Kong," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2318-:d:751875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/4/2318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/4/2318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianguo Chen & Yangyue Su & Hongyun Si & Jindao Chen, 2018. "Managerial Areas of Construction and Demolition Waste: A Scientometric Review," IJERPH, MDPI, vol. 15(11), pages 1-20, October.
    2. Tian, Yihui & Zhu, Qinghua & Lai, Kee-hung & Venus Lun, Y.H., 2014. "Analysis of greenhouse gas emissions of freight transport sector in China," Journal of Transport Geography, Elsevier, vol. 40(C), pages 43-52.
    3. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    4. Hao, Han & Geng, Yong & Li, Weiqi & Guo, Bin, 2015. "Energy consumption and GHG emissions from China's freight transport sector: Scenarios through 2050," Energy Policy, Elsevier, vol. 85(C), pages 94-101.
    5. Sánchez-Díaz, Iván & Holguín-Veras, José & Ban, Xuegang (Jeff), 2015. "A time-dependent freight tour synthesis model," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 144-168.
    6. Fei Ma & Yixuan Wang & Kum Fai Yuen & Wenlin Wang & Xiaodan Li & Yuan Liang, 2019. "The Evolution of the Spatial Association Effect of Carbon Emissions in Transportation: A Social Network Perspective," IJERPH, MDPI, vol. 16(12), pages 1-23, June.
    7. Jan Fabian Ehmke, 2012. "Routing in City Logistics," International Series in Operations Research & Management Science, in: Integration of Information and Optimization Models for Routing in City Logistics, edition 127, chapter 0, pages 119-156, Springer.
    8. Talebian, Hoda & Herrera, Omar E. & Tran, Martino & Mérida, Walter, 2018. "Electrification of road freight transport: Policy implications in British Columbia," Energy Policy, Elsevier, vol. 115(C), pages 109-118.
    9. Kellner, Florian, 2016. "Allocating greenhouse gas emissions to shipments in road freight transportation: Suggestions for a global carbon accounting standard," Energy Policy, Elsevier, vol. 98(C), pages 565-575.
    10. Khan, Mubassira & Machemehl, Randy, 2017. "Commercial vehicles time of day choice behavior in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 68-83.
    11. Rodrigues Teixeira, Ana Carolina & Machado, Pedro Gerber & Borges, Raquel Rocha & Felipe Brito, Thiago Luis & Moutinho dos Santos, Edmilson & Mouette, Dominique, 2021. "The use of liquefied natural gas as an alternative fuel in freight transport – Evidence from a driver's point of view," Energy Policy, Elsevier, vol. 149(C).
    12. Young-Chan Kim & Yuan-Long Zhang & Won-Jun Park & Gi-Wook Cha & Jung-Wan Kim & Won-Hwa Hong, 2019. "Analysis of Waste Generation Characteristics during New Apartment Construction—Considering the Construction Phase," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    13. Ruan, Minyan & Lin, Jie (Jane) & Kawamura, Kazuya, 2012. "Modeling urban commercial vehicle daily tour chaining," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1169-1184.
    14. Jianqiang Cui & Jago Dodson & Peter V. Hall, 2015. "Planning for Urban Freight Transport: An Overview," Transport Reviews, Taylor & Francis Journals, vol. 35(5), pages 583-598, September.
    15. Taha Hossein Rashidi & Matthew J. Roorda, 2018. "A business establishment fleet ownership and composition model," Transportation, Springer, vol. 45(3), pages 971-987, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Savadogo, Ibrahim & Gardrat, Mathieu & Koning, Martin, 2023. "Environmental and economic evaluation of a low emission zone for urban freight transport," Research in Transportation Economics, Elsevier, vol. 102(C).
    2. Yongsheng Yao & Peiyi Xu & Jue Li & Hengwu Hu & Qun Qi, 2024. "Advancements and Applications of Life Cycle Assessment in Slope Treatment: A Comprehensive Review," Sustainability, MDPI, vol. 16(1), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tapia, Rodrigo J. & de Jong, Gerard & Larranaga, Ana M. & Bettella Cybis, Helena B., 2020. "Application of MDCEV to infrastructure planning in regional freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 255-271.
    2. Xiaodong Chen & Anda Guo & Jiahao Zhu & Fang Wang & Yanqiu He, 2022. "Accessing performance of transport sector considering risks of climate change and traffic accidents: joint bounded-adjusted measure and Luenberger decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 115-138, March.
    3. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    4. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    5. Jansuwan, Sarawut & Ryu, Seungkyu & Chen, Anthony, 2017. "A two-stage approach for estimating a statewide truck trip table," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 274-292.
    6. Luo, Xiao & Dong, Liang & Dou, Yi & Liang, Hanwei & Ren, Jingzheng & Fang, Kai, 2016. "Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving forces and policy challenges," Journal of Transport Geography, Elsevier, vol. 56(C), pages 1-14.
    7. Thoen, Sebastiaan & Tavasszy, Lóránt & de Bok, Michiel & Correia, Goncalo & van Duin, Ron, 2020. "Descriptive modeling of freight tour formation: A shipment-based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    8. Wanjie Hu & Jianjun Dong & Bon-gang Hwang & Rui Ren & Zhilong Chen, 2019. "A Scientometrics Review on City Logistics Literature: Research Trends, Advanced Theory and Practice," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    9. Zhangyuan He & Hans-Dietrich Haasis, 2020. "A Theoretical Research Framework of Future Sustainable Urban Freight Transport for Smart Cities," Sustainability, MDPI, vol. 12(5), pages 1-28, March.
    10. Siripirote, Treerapot & Sumalee, Agachai & Ho, H.W., 2020. "Statistical estimation of freight activity analytics from Global Positioning System data of trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    11. Akeb, Hakim & Moncef, Btissam & Durand, Bruno, 2018. "Building a collaborative solution in dense urban city settings to enhance parcel delivery: An effective crowd model in Paris," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 223-233.
    12. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    13. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    14. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    15. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    16. Cheah, Lynette & Mepparambath, Rakhi Manohar & Ricart Surribas, Gabriella Marie, 2021. "Freight trips generated at retail malls in dense urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 118-131.
    17. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    18. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    19. Gong, Qiang & Wang, Kun & Fan, Xingli & Fu, Xiaowen & Xiao, Yi-bin, 2018. "International trade drivers and freight network analysis - The case of the Chinese air cargo sector," Journal of Transport Geography, Elsevier, vol. 71(C), pages 253-262.
    20. Abada, I. & Ehrenmann, A. & Lambin, X., 2017. "On the viability of energy communities," Cambridge Working Papers in Economics 1740, Faculty of Economics, University of Cambridge.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2318-:d:751875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.