IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1975-d328611.html
   My bibliography  Save this article

A Theoretical Research Framework of Future Sustainable Urban Freight Transport for Smart Cities

Author

Listed:
  • Zhangyuan He

    (Chair of Maritime Business & Logistics, University of Bremen, 28359 Bremen, Germany
    A Member of the International Graduate School for Dynamics in Logistics, University of Bremen, 28359 Bremen, Germany)

  • Hans-Dietrich Haasis

    (Full Professor and Head of Chair in Maritime Business & Logistics, University of Bremen, 28359 Bremen, Germany)

Abstract

This paper aims to construct a theoretical research framework for sustainable urban freight transport (SUFT) from the perspectives of future urban development and distribution innovations, and appropriate research methods are discussed, as well. Urban freight transport plays a critical role in the promotion of sustainable and livable cities. According to the literature review, considerable research on SUFT has focused on resolving some specific problems with a short-term perspective. The existence of an urban freight transport strategy is noted, which should be embedded in an overall sustainable development strategy with a long-term perspective (approximately 20–30 years). Nevertheless, considerable research has paid scant attention to the long-term planning of SUFT. Given this, this paper contributes to the closure of this gap. First, this paper presents a systematic literature review (SLR) to highlight published papers involving foresight research within the past 16 years (2003–2018). This step contributes to the understanding of research methods that can be used in foresight research. Subsequently, this paper discusses the impacts of both urban development and distribution innovations on future SUFT, and these effects are used to select the appropriate methods to construct the theoretical research framework. Finally, the theoretical research framework of long-term planning for SUFT is developed on the basis of two future perspectives: the trends of urban development and the application of urban distribution innovations. This framework is intended to provide an approach to designing sustainable urban logistics, taking into account urban development and distribution innovations.

Suggested Citation

  • Zhangyuan He & Hans-Dietrich Haasis, 2020. "A Theoretical Research Framework of Future Sustainable Urban Freight Transport for Smart Cities," Sustainability, MDPI, vol. 12(5), pages 1-28, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1975-:d:328611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhangyuan He & Hans-Dietrich Haasis, 2019. "Integration of Urban Freight Innovations: Sustainable Inner-Urban Intermodal Transportation in the Retail/Postal Industry," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    2. Jianqiang Cui & Jago Dodson & Peter V. Hall, 2015. "Planning for Urban Freight Transport: An Overview," Transport Reviews, Taylor & Francis Journals, vol. 35(5), pages 583-598, September.
    3. Renaud Masson & Anna Trentini & Fabien Lehuédé & Nicolas Malhéné & Olivier Péton & Houda Tlahig, 2017. "Optimization of a city logistics transportation system with mixed passengers and goods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 81-109, March.
    4. Jan Fabian Ehmke, 2012. "Integration of Information and Optimization Models for Routing in City Logistics," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-3628-7, March.
    5. Jan Fabian Ehmke, 2012. "Routing in City Logistics," International Series in Operations Research & Management Science, in: Integration of Information and Optimization Models for Routing in City Logistics, edition 127, chapter 0, pages 119-156, Springer.
    6. Hammad, Ahmed W A & Akbarnezhad, Ali & Rey, David, 2017. "Sustainable urban facility location: Minimising noise pollution and network congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 107(C), pages 38-59.
    7. Dastan Bamwesigye & Petra Hlavackova, 2019. "Analysis of Sustainable Transport for Smart Cities," Sustainability, MDPI, vol. 11(7), pages 1-20, April.
    8. Sönke Behrends & Maria Lindholm & Johan Woxenius, 2008. "The Impact of Urban Freight Transport: A Definition of Sustainability from an Actor's Perspective," Transportation Planning and Technology, Taylor & Francis Journals, vol. 31(6), pages 693-713, September.
    9. Fatnassi, Ezzeddine & Chaouachi, Jouhaina & Klibi, Walid, 2015. "Planning and operating a shared goods and passengers on-demand rapid transit system for sustainable city-logistics," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 440-460.
    10. Malene Freudendal-Pedersen & Sven Kesselring & Eriketti Servou, 2019. "What is Smart for the Future City? Mobilities and Automation," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    11. Dablanc, Laetitia, 2007. "Goods transport in large European cities: Difficult to organize, difficult to modernize," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(3), pages 280-285, March.
    12. Soud K. Al-Thani & Cynthia P. Skelhorn & Alexandre Amato & Muammer Koc & Sami G. Al-Ghamdi, 2018. "Smart Technology Impact on Neighborhood Form for a Sustainable Doha," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    13. Hsin-Ning Su & Pei-Chun Lee, 2010. "Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in Technology Foresight," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(1), pages 65-79, October.
    14. Ahmed WA Hammad & Ali Akbarnezhad & Assed Haddad & Elaine Garrido Vazquez, 2019. "Sustainable Zoning, Land-Use Allocation and Facility Location Optimisation in Smart Cities," Energies, MDPI, vol. 12(7), pages 1-23, April.
    15. Geels, Frank W. & Schot, Johan, 2007. "Typology of sociotechnical transition pathways," Research Policy, Elsevier, vol. 36(3), pages 399-417, April.
    16. Iden, Jon & Methlie, Leif B. & Christensen, Gunnar E., 2017. "The nature of strategic foresight research: A systematic literature review," Technological Forecasting and Social Change, Elsevier, vol. 116(C), pages 87-97.
    17. Frauke Behrendt, 2019. "Cycling the Smart and Sustainable City: Analyzing EC Policy Documents on Internet of Things, Mobility and Transport, and Smart Cities," Sustainability, MDPI, vol. 11(3), pages 1-30, February.
    18. Jari Kaivo-oja, 2014. "Three theoretical approaches to pirate entrepreneurship: towards future studies of pirate entrepreneurship," International Journal of Entrepreneurship and Small Business, Inderscience Enterprises Ltd, vol. 22(4), pages 449-465.
    19. Stanislav Birko & Edward S Dove & Vural Özdemir, 2015. "Evaluation of Nine Consensus Indices in Delphi Foresight Research and Their Dependency on Delphi Survey Characteristics: A Simulation Study and Debate on Delphi Design and Interpretation," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cesar Eduardo Leite & Sérgio Ronaldo Granemann & Ari Melo Mariano & Leise Kelli de Oliveira, 2022. "Opinion of Residents about the Freight Transport and Its Influence on the Quality of Life: An Analysis for Brasília (Brazil)," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    2. Deveci, Muhammet & Pamucar, Dragan & Gokasar, Ilgin & Delen, Dursun & Wu, Qun & Simic, Vladimir, 2022. "An analytics approach to decision alternative prioritization for zero-emission zone logistics," Journal of Business Research, Elsevier, vol. 146(C), pages 554-570.
    3. Xiao Lin & Yoshinari Nishiki & Lóránt A. Tavasszy, 2020. "Performance and Intrusiveness of Crowdshipping Systems: An Experiment with Commuting Cyclists in The Netherlands," Sustainability, MDPI, vol. 12(17), pages 1-14, September.
    4. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    5. Krystian Pietrzak & Oliwia Pietrzak, 2022. "Tram System as a Challenge for Smart and Sustainable Urban Public Transport: Effects of Applying Bi-Directional Trams," Energies, MDPI, vol. 15(15), pages 1-29, August.
    6. Natalia Drop & Daria Garlińska, 2021. "Evaluation of Intelligent Transport Systems Used in Urban Agglomerations and Intercity Roads by Professional Truck Drivers," Sustainability, MDPI, vol. 13(5), pages 1-15, March.
    7. Eva Brumercikova & Adrian Sperka, 2020. "Problems of Access to Services at Railway Stations in Freight Transport in the Slovak Republic," Sustainability, MDPI, vol. 12(19), pages 1-13, September.
    8. Frazen Tolentino-Zondervan & Enide Bogers & Luc van de Sande, 2021. "A Managerial and Behavioral Approach in Aligning Stakeholder Goals in Sustainable Last Mile Logistics: A Case Study in the Netherlands," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    9. Paulina Golinska-Dawson & Kanchana Sethanan, 2023. "Sustainable Urban Freight for Energy-Efficient Smart Cities—Systematic Literature Review," Energies, MDPI, vol. 16(6), pages 1-28, March.
    10. Sören Lauenstein & Christoph Schank, 2022. "Design of a Sustainable Last Mile in Urban Logistics—A Systematic Literature Review," Sustainability, MDPI, vol. 14(9), pages 1-14, May.
    11. Joanna Oleśków-Szłapka & Irena Pawłyszyn & Joanna Przybylska, 2020. "Sustainable Urban Mobility in Poznan and Oslo-Actual State and Development Perspectives," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    12. Vítor de Castro Paes & Clinton Hudson Moreira Pessoa & Rodrigo Pereira Pagliusi & Carlos Eduardo Barbosa & Matheus Argôlo & Yuri Oliveira de Lima & Herbert Salazar & Alan Lyra & Jano Moreira de Souza, 2023. "Analyzing the Challenges for Future Smart and Sustainable Cities," Sustainability, MDPI, vol. 15(10), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paulina Golinska-Dawson & Kanchana Sethanan, 2023. "Sustainable Urban Freight for Energy-Efficient Smart Cities—Systematic Literature Review," Energies, MDPI, vol. 16(6), pages 1-28, March.
    2. Ahmad Adeel & Bruno Notteboom & Ansar Yasar & Kris Scheerlinck & Jeroen Stevens, 2021. "Insights into the Impacts of Mega Transport Infrastructures on the Transformation of Urban Fabric: Case of BRT Lahore," Sustainability, MDPI, vol. 13(13), pages 1-32, July.
    3. Gaofeng Gu & Tao Feng & Chixing Zhong & Xiaoxi Cai & Jiang Li, 2021. "The Effects of Life Course Events on Car Ownership and Sustainable Mobility Tools Adoption Decisions: Results of an Error Component Random Parameter Logit Model," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    4. Wanjie Hu & Jianjun Dong & Bon-gang Hwang & Rui Ren & Zhilong Chen, 2019. "A Scientometrics Review on City Logistics Literature: Research Trends, Advanced Theory and Practice," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
    5. Han Zhang & Yongbo Lv & Jianwei Guo, 2022. "New Development Direction of Underground Logistics from the Perspective of Public Transport: A Systematic Review Based on Scientometrics," Sustainability, MDPI, vol. 14(6), pages 1-31, March.
    6. Marcucci, Edoardo & Gatta, Valerio & Scaccia, Luisa, 2015. "Urban freight, parking and pricing policies: An evaluation from a transport providers’ perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 239-249.
    7. Snežana Tadić & Mladen Krstić & Milovan Kovač, 2023. "Assessment of city logistics initiative categories sustainability: case of Belgrade," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1383-1419, February.
    8. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou, 2022. "On understanding the impacts of shared public transportation on urban traffic and road safety using an agent-based simulation with heterogeneous fleets: a case study of Casablanca city," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 3893-3932, December.
    9. Jitka Fialová & Dastan Bamwesigye & Jan Łukaszkiewicz & Beata Fortuna-Antoszkiewicz, 2021. "Smart Cities Landscape and Urban Planning for Sustainability in Brno City," Land, MDPI, vol. 10(8), pages 1-17, August.
    10. Juan Guillermo Urzúa-Morales & Juan Pedro Sepulveda-Rojas & Miguel Alfaro & Guillermo Fuertes & Rodrigo Ternero & Manuel Vargas, 2020. "Logistic Modeling of the Last Mile: Case Study Santiago, Chile," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    11. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    12. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    13. Pedro A. P. Dias & Hugo Yoshizaki & Patricia Favero & Jose Geraldo Vidal Vieira, 2019. "Daytime or Overnight Deliveries? Perceptions of Drivers and Retailers in São Paulo City," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    14. Xiaoxuan Wei & Meng Ye & Liang Yuan & Wei Bi & Weisheng Lu, 2022. "Analyzing the Freight Characteristics and Carbon Emission of Construction Waste Hauling Trucks: Big Data Analytics of Hong Kong," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    15. Tao Yang & Weixin Wang, 2022. "Logistics Network Distribution Optimization Based on Vehicle Sharing," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
    16. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Wang, Li & Li, Tianqi, 2024. "Scheduling shared passenger and freight transport for an underground logistics system," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).
    17. Li, Siqiao & Zhu, Xiaoning & Shang, Pan & Li, Tianqi & Liu, Wenqian, 2023. "Optimizing a shared freight and passenger high-speed railway system: A multi-commodity flow formulation with Benders decomposition solution approach," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 1-31.
    18. Mohammed, Sayeed & Desha, Cheryl & Goonetilleke, Ashantha, 2022. "Investigating low-carbon pathways for hydrocarbon-dependent rentier states: Economic transition in Qatar," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    19. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    20. Pel, Bonno & Raven, Rob & van Est, Rinie, 2020. "Transitions governance with a sense of direction: synchronization challenges in the case of the dutch ‘Driverless Car’ transition," Technological Forecasting and Social Change, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1975-:d:328611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.