IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i7p2459-d341255.html
   My bibliography  Save this article

Impacts of Drought on Maize and Soybean Production in Northeast China During the Past Five Decades

Author

Listed:
  • Chunyi Wang

    (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China)

  • Hans W. Linderholm

    (Department of Earth Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
    Department of Geography, University of Cambridge, Cambridge CB2 3EN, UK)

  • Yanling Song

    (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China)

  • Fang Wang

    (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China)

  • Yanju Liu

    (National Climate Center, China Meteorological Administration, Beijing 100081, China)

  • Jinfeng Tian

    (Faculty of Agricultural and Nutritional Sciences, Kiel University, 24118 Kiel, Germany)

  • Jinxia Xu

    (Climate Center of Sichuan Province, China Meteorological Administration, Chengdu 610072, China)

  • Yingbo Song

    (National Meteorological Center, China Meteorological Administration, Beijing 100081, China)

  • Guoyu Ren

    (National Climate Center, China Meteorological Administration, Beijing 100081, China
    Department of Atmospheric Sciences, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China)

Abstract

Climate change has a distinct impact on agriculture in China, particularly in the northeast, a key agriculture area sensitive to extreme hydroclimate events. Using monthly climate and agriculture data, the influence of drought on maize and soybean yields—two of the main crops in the region—in northeast China since 1961 to 2017 were investigated. The results showed that the temperature in the growing season increased by 1.0 °C from the period 1998–2017 to the period 1961–1980, while the annual precipitation decreased slightly. However, precipitation trends varied throughout the growing season (May–September), increasing slightly in May and June, but decreasing in July, August and September, associated with the weakening of the East Asian summer monsoon. Consequently, the annual and growing season drought frequency increased by 15%, and 25%, respectively, in the period 1998–2017 relative to the period 1961–1980. The highest drought frequency (55%) was observed in September. At the same time, the drought intensity during the growing season increased by 7.8%. The increasing frequency and intensity of drought had negative influences on the two crops. During moderate drought years in the period 1961–2017, 3.2% and 10.4% of the provincial maize and soybean yields were lost, respectively. However, during more severe drought years, losses doubled for soybean (21.8%), but increased more than four-fold for maize (14.0%). Moreover, in comparison to the period 1961–1980, a higher proportion of the yields were lost in the period 1998–2017, particularly for maize, which increased by 15% (increase for soybean was 2.4%). This change largely depends on increasing droughts in August and September, when both crops are in their filling stages. The impact of drought on maize and soybean production was different during different growth stages, where a strong relationship was noted between drought and yield loss of soybean in its filling stage. Given the sensitivity of maize and soybean yields in northeast China to drought, and the observed production trends, climate change will likely have significant negative impacts on productivity in the future.

Suggested Citation

  • Chunyi Wang & Hans W. Linderholm & Yanling Song & Fang Wang & Yanju Liu & Jinfeng Tian & Jinxia Xu & Yingbo Song & Guoyu Ren, 2020. "Impacts of Drought on Maize and Soybean Production in Northeast China During the Past Five Decades," IJERPH, MDPI, vol. 17(7), pages 1-10, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2459-:d:341255
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/7/2459/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/7/2459/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. Vergni & F. Todisco & F. Mannocchi, 2015. "Erratum to: Analysis of agricultural drought characteristics through a two-dimensional copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4203-4204, September.
    2. Wen Wang & Ye Zhu & Rengui Xu & Jintao Liu, 2015. "Drought severity change in China during 1961–2012 indicated by SPI and SPEI," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2437-2451, February.
    3. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    4. Shengzhi Huang & Jianxia Chang & Qiang Huang & Yutong Chen, 2014. "Spatio-temporal Changes and Frequency Analysis of Drought in the Wei River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3095-3110, August.
    5. Troy Sternberg, 2011. "Regional drought has a global impact," Nature, Nature, vol. 472(7342), pages 169-169, April.
    6. Bin Li & Hongbo Su & Fang Chen & Jianjun Wu & Jianwei Qi, 2013. "The changing characteristics of drought in China from 1982 to 2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 723-743, September.
    7. L. Vergni & F. Todisco & F. Mannocchi, 2015. "Analysis of agricultural drought characteristics through a two-dimensional copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2819-2835, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hengli Wang & Hong Liu & Rui Ma, 2022. "Assessment and Prediction of Grain Production Considering Climate Change and Air Pollution in China," Sustainability, MDPI, vol. 14(15), pages 1-22, July.
    2. Zhixiao Zou & Changxiu Cheng & Shi Shen, 2023. "Effects of Meteorological Conditions and Irrigation Levels during Different Growth Stages on Maize Yield in the Jing-Jin-Ji Region," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    3. Hao, Baozhen & Ma, Jingli & Si, Shihua & Wang, Xiaojie & Wang, Shuli & Li, Fengmei & Jiang, Lina, 2024. "Response of grain yield and water productivity to plant density in drought-tolerant maize cultivar under irrigated and rainfed conditions," Agricultural Water Management, Elsevier, vol. 298(C).
    4. Zhihui Li & Haowei Wu & Xiangzheng Deng, 2022. "Spatial Pattern of Water Footprints for Crop Production in Northeast China," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    5. Vuwani Makuya & Weldemichael Tesfuhuney & Mokhele E. Moeletsi & Zaid Bello, 2024. "Assessing the Impact of Agricultural Drought on Yield over Maize Growing Areas, Free State Province, South Africa, Using the SPI and SPEI," Sustainability, MDPI, vol. 16(11), pages 1-24, May.
    6. Hengli Wang & Hong Liu & Danyang Wang, 2022. "Agricultural Insurance, Climate Change, and Food Security: Evidence from Chinese Farmers," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    7. Hongpeng Guo & Sidong Xie & Chulin Pan, 2021. "The Impact of Planting Industry Structural Changes on Carbon Emissions in the Three Northeast Provinces of China," IJERPH, MDPI, vol. 18(2), pages 1-20, January.
    8. Xuanwei Ning & Peipei Dong & Chengliang Wu & Yongliang Wang & Yang Zhang, 2022. "Influence Mechanisms of Dynamic Changes in Temperature, Precipitation, Sunshine Duration and Active Accumulated Temperature on Soybean Resources: A Case Study of Hulunbuir, China, from 1951 to 2019," Energies, MDPI, vol. 15(22), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zahra Sadat Hosseini & Mahnoosh Moghaddasi & Shahla Paimozd, 2023. "Simultaneous Monitoring of Different Drought Types Using Linear and Nonlinear Combination Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1125-1151, February.
    2. Ali İ. Genç, 2021. "Products, Sums and Quotients of Upper Truncated Pareto Random Variables with an Application in Hydrology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 369-383, January.
    3. Zahra Fahimirad & Nazanin Shahkarami, 2021. "The Impact of Climate Change on Hydro-Meteorological Droughts Using Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3969-3993, September.
    4. Cai, Siyang & Zuo, Depeng & Wang, Huixiao & Xu, Zongxue & Wang, GuoQing & Yang, Hong, 2023. "Assessment of agricultural drought based on multi-source remote sensing data in a major grain producing area of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
    5. Ning Nie & Wanchang Zhang & Zhijie Zhang & Huadong Guo & Natarajan Ishwaran, 2016. "Reconstructed Terrestrial Water Storage Change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the Latest GRACE and GLDAS Products," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 279-294, January.
    6. Dhakal, Aayush Raj & Etienne, Xiaoli L. & Trujillo-Barrera, Andres A., 2022. "Effect of Drought on Spring Wheat Prices in Northern United States," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322285, Agricultural and Applied Economics Association.
    7. Wencong Yue & Zhongqi Liu & Meirong Su & Meng Xu & Qiangqiang Rong & Chao Xu & Zhenkun Tan & Xuming Jiang & Zhixin Su & Yanpeng Cai, 2022. "Inclusion of Ecological Water Requirements in Optimization of Water Resource Allocation Under Changing Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 551-570, January.
    8. Kimia Naderi & Mahnoosh Moghaddasi & Ashkan shokri, 2022. "Drought Occurrence Probability Analysis Using Multivariate Standardized Drought Index and Copula Function Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2865-2888, June.
    9. Ning Nie & Wanchang Zhang & Zhijie Zhang & Huadong Guo & Natarajan Ishwaran, 2016. "Reconstructed Terrestrial Water Storage Change (ΔTWS) from 1948 to 2012 over the Amazon Basin with the Latest GRACE and GLDAS Products," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 279-294, January.
    10. Milan Cisty & Anna Becova & Lubomir Celar, 2016. "Analysis of Irrigation Needs Using an Approach Based on a Bivariate Copula Methodology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 167-182, January.
    11. Sosheel S. Godfrey & Thomas Nordblom & Ryan H. L. Ip & Susan Robertson & Timothy Hutchings & Karl Behrendt, 2021. "Drought Shocks and Gearing Impacts on the Profitability of Sheep Farming," Agriculture, MDPI, vol. 11(4), pages 1-19, April.
    12. Vergni, L. & Todisco, F. & Di Lena, B. & Mannocchi, F., 2020. "Bivariate analysis of drought duration and severity for irrigation planning," Agricultural Water Management, Elsevier, vol. 229(C).
    13. Yue, Wencong & Su, Meirong & Cai, Yanpeng & Rong, Qiangqiang & Tan, Zhenkun, 2021. "Reactive nitrogen loss from livestock-based food and biofuel production systems considering climate change and dietary transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Ihsan F. Hasan & Rozi Abdullah, 2022. "Agricultural Drought Characteristics Analysis Using Copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5915-5930, December.
    15. George Tsakiris & Nikos Kordalis & Dimitris Tigkas & Vasileios Tsakiris & Harris Vangelis, 2016. "Analysing Drought Severity and Areal Extent by 2D Archimedean Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(15), pages 5723-5735, December.
    16. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    17. Kedi Liu & Ranran Wang & Inge Schrijver & Rutger Hoekstra, 2024. "Can we project well-being? Towards integral well-being projections in climate models and beyond," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    18. Mansoor Ahmed & Ghulam Hussain Dars & Suhail Ahmed & Nir Y. Krakauer, 2023. "Analyzing drought trends over Sindh Province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 643-661, October.
    19. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    20. repec:ags:aaea22:335489 is not listed on IDEAS
    21. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2459-:d:341255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.