IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i3p445-d1596063.html
   My bibliography  Save this article

Study on the Probability of Meteorological-to-Hydrological Drought Propagation Based on a Bayesian Network

Author

Listed:
  • Xiangyang Zhang

    (School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China)

  • Huiliang Wang

    (School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China)

  • Zhilei Yu

    (School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China)

  • Dengming Yan

    (Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, China)

  • Ruxue Liu

    (Yellow River Conservancy Commission Hydrology and Water Resources Bureau of Henen, Zhengzhou 450003, China)

  • Simin Liu

    (China National Forestry-Grassland Development Research Center, Beijing 100714, China)

  • Yujia Zhu

    (School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
    Yanqing Water Authority of Beijing, Beijing 102100, China)

  • Yifan Chen

    (Yellow River Conservancy Technical Institute, North China University of Water Resources and Electric Power, Kaifeng 475004, China)

  • Zening Wu

    (School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China)

Abstract

With accelerating climate change, droughts have increased in frequency and exerted a substantial influence on socioeconomic factors. Under conditions of insufficient precipitation and high temperatures, meteorological droughts have the potential to develop into more intense hydrological droughts, and the independent impact of temperature factors on drought propagation has not been considered separately. This study constructed a Standardized Temperature Index (STI) and, combined with time-series datasets of standardized indices of precipitation and runoff (SPI and SRI), based on Bayesian network principles, analyzed the probabilistic characteristics of drought propagation from meteorology to hydrology due to the influence of single or dual factors in the Yiluo River Basin (1961–2020). It also explored the transmission mechanisms of temperature and precipitation that drive and affect meteorological and hydrological drought. The results showed that propagation of meteorological to hydrological droughts increased with rising temperatures, and the propagation probability to severe and extreme hydrological drought increased by approximately 5%. Under the most adverse circumstances (high temperature and precipitation shortage scenarios), the likelihood of meteorological droughts progressing into intense hydrological drought events rose to 80%. Increasing temperature is expected to lead to more severe hydrological droughts. This study offers a theoretical foundation for drought prevention and mitigation.

Suggested Citation

  • Xiangyang Zhang & Huiliang Wang & Zhilei Yu & Dengming Yan & Ruxue Liu & Simin Liu & Yujia Zhu & Yifan Chen & Zening Wu, 2025. "Study on the Probability of Meteorological-to-Hydrological Drought Propagation Based on a Bayesian Network," Land, MDPI, vol. 14(3), pages 1-24, February.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:445-:d:1596063
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/3/445/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/3/445/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farhang Rahmani & Mohammad Hadi Fattahi, 2021. "A multifractal cross-correlation investigation into sensitivity and dependence of meteorological and hydrological droughts on precipitation and temperature," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2197-2219, December.
    2. Muhammad Nouman Sattar & Jin-Young Lee & Ji-Yae Shin & Tae-Woong Kim, 2019. "Probabilistic Characteristics of Drought Propagation from Meteorological to Hydrological Drought in South Korea," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(7), pages 2439-2452, May.
    3. Adriaan J. Teuling, 2018. "A hot future for European droughts," Nature Climate Change, Nature, vol. 8(5), pages 364-365, May.
    4. Chunyi Wang & Hans W. Linderholm & Yanling Song & Fang Wang & Yanju Liu & Jinfeng Tian & Jinxia Xu & Yingbo Song & Guoyu Ren, 2020. "Impacts of Drought on Maize and Soybean Production in Northeast China During the Past Five Decades," IJERPH, MDPI, vol. 17(7), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinhua Wen & Yian Hua & Chenkai Cai & Shiwu Wang & Helong Wang & Xinyan Zhou & Jian Huang & Jianqun Wang, 2023. "Probabilistic Forecast and Risk Assessment of Flash Droughts Based on Numeric Weather Forecast: A Case Study in Zhejiang, China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    2. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Ferreira, Paulo & Aslam, Faheem & Tabak, Benjamin Miranda, 2022. "Interplay multifractal dynamics among metal commodities and US-EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    3. Alice Baronetti & Vincent Dubreuil & Antonello Provenzale & Simona Fratianni, 2022. "Future droughts in northern Italy: high-resolution projections using EURO-CORDEX and MED-CORDEX ensembles," Climatic Change, Springer, vol. 172(3), pages 1-22, June.
    4. Zhixiao Zou & Changxiu Cheng & Shi Shen, 2023. "Effects of Meteorological Conditions and Irrigation Levels during Different Growth Stages on Maize Yield in the Jing-Jin-Ji Region," Sustainability, MDPI, vol. 15(4), pages 1-11, February.
    5. Moritz von Cossel & Andrea Bauerle & Meike Boob & Ulrich Thumm & Martin Elsaesser & Iris Lewandowski, 2019. "The Performance of Mesotrophic Arrhenatheretum Grassland under Different Cutting Frequency Regimes for Biomass Production in Southwest Germany," Agriculture, MDPI, vol. 9(9), pages 1-17, September.
    6. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A., 2022. "Multifractal risk measures by Macroeconophysics perspective: The case of Brazilian inflation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Hao, Baozhen & Ma, Jingli & Si, Shihua & Wang, Xiaojie & Wang, Shuli & Li, Fengmei & Jiang, Lina, 2024. "Response of grain yield and water productivity to plant density in drought-tolerant maize cultivar under irrigated and rainfed conditions," Agricultural Water Management, Elsevier, vol. 298(C).
    8. Zhan, Cun & Liang, Chuan & Zhao, Lu & Jiang, Shouzheng & Niu, Kaijie & Zhang, Yaling, 2023. "Multifractal characteristics of multiscale drought in the Yellow River Basin, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    9. Qianchuan Mi & Chuanyou Ren & Yanhua Wang & Xining Gao & Limin Liu & Yue Li, 2023. "A robust ensemble drought index: construction and assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 1139-1159, March.
    10. Muhammad Jehanzaib & Sabab Ali Shah & Ji Eun Kim & Tae-Woong Kim, 2023. "Exploring spatio-temporal variation of drought characteristics and propagation under climate change using multi-model ensemble projections," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(3), pages 2483-2503, February.
    11. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    12. repec:caa:jnlhor:v:preprint:id:177-2022-hortsci is not listed on IDEAS
    13. Xiangtao Wang & Zhigang Hu & Ziwei Zhang & Jiwang Tang & Ben Niu, 2024. "Altitude-Shifted Climate Variables Dominate the Drought Effects on Alpine Grasslands over the Qinghai–Tibetan Plateau," Sustainability, MDPI, vol. 16(15), pages 1-16, August.
    14. Zhihui Li & Haowei Wu & Xiangzheng Deng, 2022. "Spatial Pattern of Water Footprints for Crop Production in Northeast China," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    15. Saeed Azimi & Erfan Hassannayebi & Morteza Boroun & Mohammad Tahmoures, 2020. "Probabilistic Analysis of Long-Term Climate Drought Using Steady-State Markov Chain Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4703-4724, December.
    16. Peng Ming Yang & Rui Jiao Yang & Song Tao He, 2024. "Improving photosynthesis and the ascorbate-glutathione cycle of own-root and grafted-root chrysanthemums by brassinolide under drought stress," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 51(1), pages 59-67.
    17. Yonca Cavus & Kerstin Stahl & Hafzullah Aksoy, 2022. "Revisiting Major Dry Periods by Rolling Time Series Analysis for Human-Water Relevance in Drought," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2725-2739, June.
    18. Vuwani Makuya & Weldemichael Tesfuhuney & Mokhele E. Moeletsi & Zaid Bello, 2024. "Assessing the Impact of Agricultural Drought on Yield over Maize Growing Areas, Free State Province, South Africa, Using the SPI and SPEI," Sustainability, MDPI, vol. 16(11), pages 1-24, May.
    19. Kiyoumars Roushangar & Roghayeh Ghasempour & Farhad Alizadeh, 2022. "Uncertainty Assessment of the Integrated Hybrid Data Processing Techniques for Short to Long Term Drought Forecasting in Different Climate Regions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(1), pages 273-296, January.
    20. Chong Du & Jiashuo Chen & Tangzhe Nie & Changlei Dai, 2022. "Spatial–temporal changes in meteorological and agricultural droughts in Northeast China: change patterns, response relationships and causes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 155-173, January.
    21. Moritz Von Cossel & Iris Lewandowski & Berien Elbersen & Igor Staritsky & Michiel Van Eupen & Yasir Iqbal & Stefan Mantel & Danilo Scordia & Giorgio Testa & Salvatore Luciano Cosentino & Oksana Maliar, 2019. "Marginal Agricultural Land Low-Input Systems for Biomass Production," Energies, MDPI, vol. 12(16), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:445-:d:1596063. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.