IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i6p1064-d148766.html
   My bibliography  Save this article

Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors

Author

Listed:
  • Meie Wang

    (State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)

  • Haizhen Zhang

    (Lingyin Administration Department (Hangzhou Flower Garden), Hangzhou Park and Cultural Relic Administration, Hangzhou 310012, China)

Abstract

Heavy metal contamination in roadside soil due to traffic emission has been recognized for a long time. However, seldom has been reported regarding identification of critical factors influencing the accumulation of heavy metals in urban roadside soils due to the frequent disturbances such as the repair of damaged roads and green belt maintanance. Heavy metals in the roadside soils of 45 roads in Xihu district, Hangzhou city were investigated. Results suggested the accumulation of Cu, Pb, Cd, Cr, and Zn in roadside soil was affected by human activity. However, only two sites had Pb and Zn excessing the standards for residential areas, respectively, according to Chinese Environmental Quality Standards for soils. The concentrations of Cu, Pb, Cd, and Zn were significantly and positively correlated to soil pH and organic matter. An insignificant correlation between the age of the roads or vegetation cover types and the concentration of heavy metals was found although they were reported closely relating to the accumulation of heavy metals in roadside soils of highways. The highest Pb, Cd, and Cr taking place in sites with heavy traffic and significant differences in the concentrations of Cu, Pb, Cd, and Zn among the different categories of roads suggested the contribution of traffic intensity. However, it was difficult to establish a quantitative relationship between traffic intensity and the concentrations of heavy metals in the roadside soil. It could be concluded that impaction of traffic emission on the accumulation of heavy metals in roadside soils in urban area was slight and soil properties such as pH and organic matters were critical factors influencing the retention of heavy metals in soils.

Suggested Citation

  • Meie Wang & Haizhen Zhang, 2018. "Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors," IJERPH, MDPI, vol. 15(6), pages 1-11, May.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:6:p:1064-:d:148766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/6/1064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/6/1064/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ababo Workineh Tadesse & Tekleweini Gereslassie & Qiang Xu & Xiaojun Tang & Jun Wang, 2018. "Concentrations, Distribution, Sources and Ecological Risk Assessment of Trace Elements in Soils from Wuhan, Central China," IJERPH, MDPI, vol. 15(12), pages 1-19, December.
    2. Jaskaran Kaur & Sartaj Ahmad Bhat & Navdeep Singh & Sandip Singh Bhatti & Varinder Kaur & Jatinder Kaur Katnoria, 2022. "Assessment of the Heavy Metal Contamination of Roadside Soils Alongside Buddha Nullah, Ludhiana, (Punjab) India," IJERPH, MDPI, vol. 19(3), pages 1-24, January.
    3. Wei-Jhan Syu & Tsun-Kuo Chang & Shu-Yuan Pan, 2020. "Establishment of an Automatic Real-Time Monitoring System for Irrigation Water Quality Management," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    4. Guijie Tong & Shaohua Wu & Yujie Yuan & Fufu Li & Lian Chen & Daohao Yan, 2018. "Modeling of Trace Metal Migration and Accumulation Processes in a Soil-Wheat System in Lihe Watershed, China," IJERPH, MDPI, vol. 15(11), pages 1-16, November.
    5. Elżbieta Zawierucha & Monika Skowrońska & Marcin Zawierucha, 2022. "Chemical and Biological Properties of Agricultural Soils Located along Communication Routes," Agriculture, MDPI, vol. 12(12), pages 1-11, November.
    6. Nattanan Krailertrattanachai & Daojarus Ketrot & Worachart Wisawapipat, 2019. "The Distribution of Trace Metals in Roadside Agricultural Soils, Thailand," IJERPH, MDPI, vol. 16(5), pages 1-12, February.
    7. Wanjiang She & Linghui Guo & Jiangbo Gao & Chi Zhang & Shaohong Wu & Yuanmei Jiao & Gaoru Zhu, 2022. "Spatial Distribution of Soil Heavy Metals and Associated Environmental Risks near Major Roads in Southern Tibet, China," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    8. Jorge Paz-Ferreiro & Gabriel Gascó & Ana Méndez & Suzie M. Reichman, 2018. "Soil Pollution and Remediation," IJERPH, MDPI, vol. 15(8), pages 1-3, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:6:p:1064-:d:148766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.