IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i15p5364-d389825.html
   My bibliography  Save this article

Bayesian Network-Based Risk Analysis of Chemical Plant Explosion Accidents

Author

Listed:
  • Yunmeng Lu

    (Beijing Institute of Technology, School of Management and Economics, Beijing 100081, China)

  • Tiantian Wang

    (Beijing Institute of Technology, School of Management and Economics, Beijing 100081, China)

  • Tiezhong Liu

    (Beijing Institute of Technology, School of Management and Economics, Beijing 100081, China)

Abstract

The chemical industry has made great contributions to the national economy, but frequent chemical plant explosion accidents (CPEAs) have also caused heavy property losses and casualties, as the CPEA is the result of interaction of many related risk factors, leading to uncertainty in the evolution of the accident. To systematically excavate and analyze the underlying causes of accidents, this paper first integrates emergency elements in the frame of orbit intersection theory and proposes 14 nodes to represent the evolution path of the accident. Then, combined with historical data and expert experience, a Bayesian network (BN) model of CPEAs was established. Through scenario analysis and sensitivity analysis, the interaction between factors and the impact of the factors on accident consequences was evaluated. It is found that the direct factors have the most obvious influence on the accident consequences, and the unsafe conditions contribute more than the unsafe behaviors. Furthermore, considering the factor chain, the management factors, especially safety education and training, are the key link of the accident that affects unsafe behaviors and unsafe conditions. Moreover, effective government emergency response has played a more prominent role in controlling environmental pollution. In addition, the complex network relationship between elements is presented in a sensitivity index matrix, and we extracted three important risk transmission paths from it. The research provides support for enterprises to formulate comprehensive safety production management strategies and control key factors in the risk transmission path to reduce CPEA risks.

Suggested Citation

  • Yunmeng Lu & Tiantian Wang & Tiezhong Liu, 2020. "Bayesian Network-Based Risk Analysis of Chemical Plant Explosion Accidents," IJERPH, MDPI, vol. 17(15), pages 1-20, July.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:15:p:5364-:d:389825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/15/5364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/15/5364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lina Han & Qing Ma & Feng Zhang & Yichen Zhang & Jiquan Zhang & Yongbin Bao & Jing Zhao, 2019. "Risk Assessment of An Earthquake-Collapse-Landslide Disaster Chain by Bayesian Network and Newmark Models," IJERPH, MDPI, vol. 16(18), pages 1-17, September.
    2. Baoping Cai & Yonghong Liu & Zengkai Liu & Xiaojie Tian & Yanzhen Zhang & Renjie Ji, 2013. "Application of Bayesian Networks in Quantitative Risk Assessment of Subsea Blowout Preventer Operations," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1293-1311, July.
    3. Tiezhong Liu & Hubo Zhang & Xiaowei Li & Haiyan Li, 2017. "Effects of organization factors on flood-related Natechs in urban areas of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 355-365, August.
    4. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    5. Rongchen Zhu & Xiaofeng Hu & Xin Li & Han Ye & Nan Jia, 2020. "Modeling and Risk Analysis of Chemical Terrorist Attacks: A Bayesian Network Method," IJERPH, MDPI, vol. 17(6), pages 1-23, March.
    6. Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
    7. Hongyang Yu & Faisal Khan & Brian Veitch, 2017. "A Flexible Hierarchical Bayesian Modeling Technique for Risk Analysis of Major Accidents," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1668-1682, September.
    8. Jun Zhang & Haifeng Bian & Huanhuan Zhao & Xuexue Wang & Linlin Zhang & Yiping Bai, 2020. "Bayesian Network-Based Risk Assessment of Single-Phase Grounding Accidents of Power Transmission Lines," IJERPH, MDPI, vol. 17(6), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lidong Pan & Yu Zheng & Juan Zheng & Bin Xu & Guangzhe Liu & Min Wang & Dingding Yang, 2022. "Characteristics of Chemical Accidents and Risk Assessment Method for Petrochemical Enterprises Based on Improved FBN," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    2. Liu, Jinbiao & Tan, Lingling & Ma, Yaping, 2024. "An integrated risk assessment method for urban areas due to chemical leakage accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Jin-Zhu & Whitman, Mackenzie & Kermanshah, Amirhassan & Baroud, Hiba, 2021. "A hierarchical Bayesian approach for assessing infrastructure networks serviceability under uncertainty: A case study of water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Sajid, Zaman, 2021. "A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a U.S. biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
    4. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
    6. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. Khakzad, Nima & Reniers, Genserik & Abbassi, Rouzbeh & Khan, Faisal, 2016. "Vulnerability analysis of process plants subject to domino effects," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 127-136.
    8. Quntao Yang & Shuliang Zhang & Qiang Dai & Rui Yao, 2020. "Improved Framework for Assessing Vulnerability to Different Types of Urban Floods," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    9. He, Rui & Zhu, Jingyu & Chen, Guoming & Tian, Zhigang, 2022. "A real-time probabilistic risk assessment method for the petrochemical industry based on data monitoring," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    10. Guizhen Zhang & Vinh V. Thai & Adrian Wing‐Keung Law & Kum Fai Yuen & Hui Shan Loh & Qingji Zhou, 2020. "Quantitative Risk Assessment of Seafarers’ Nonfatal Injuries Due to Occupational Accidents Based on Bayesian Network Modeling," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 8-23, January.
    11. Yu, Shui & Wang, Zhonglai & Zhang, Kewang, 2018. "Sequential time-dependent reliability analysis for the lower extremity exoskeleton under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 45-52.
    12. Khakzad, Nima, 2021. "Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    13. Ding, Long & Khan, Faisal & Abbassi, Rouzbeh & Ji, Jie, 2019. "FSEM: An approach to model contribution of synergistic effect of fires for domino effects," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 271-278.
    14. Zhou, Jianxiong & Wei, Shanbi & Chai, Yi, 2021. "Using improved dynamic Bayesian networks in reliability evaluation for flexible test system of aerospace pyromechanical device products," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    15. Keisuke Himoto, 2020. "Hierarchical Bayesian Modeling of Post‐Earthquake Ignition Probabilities Considering Inter‐Earthquake Heterogeneity," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1124-1138, June.
    16. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    17. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    18. Costa, Rodrigo & Haukaas, Terje & Chang, Stephanie E. & Dowlatabadi, Hadi, 2019. "Object-oriented model of the seismic vulnerability of the fuel distribution network in coastal British Columbia," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 11-23.
    19. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    20. Zhou, Jianfeng & Reniers, Genserik & Khakzad, Nima, 2016. "Application of event sequence diagram to evaluate emergency response actions during fire-induced domino effects," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 202-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:15:p:5364-:d:389825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.