IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i11p3896-d365341.html
   My bibliography  Save this article

Environment-Friendly Biodiesel/Diesel Blends for Improving the Exhaust Emission and Engine Performance to Reduce the Pollutants Emitted from Transportation Fleets

Author

Listed:
  • Amit Kumar Sharma

    (Department of Chemistry and Biofuels Research Laboratory, Centre for Alternate Energy Research, R&D, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India)

  • Pankaj Kumar Sharma

    (Department of Mechanical Engineering and Biofuels Research Laboratory, Centre for Alternate Energy Research, R&D, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India)

  • Venkateswarlu Chintala

    (School of Engineering and applied Sciences, National Rail and Transportation institute, Deemed to be University, Vadodara 390 004, Gujarat, India)

  • Narayan Khatri

    (Department of Mechanical Engineering and Biofuels Research Laboratory, Centre for Alternate Energy Research, R&D, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India)

  • Alok Patel

    (Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology, 971 87 Lulea, Sweden)

Abstract

Biodiesel derived from biomass is a renewable source of fuel, and global application of biodiesel in the transport sector has rapidly expanded over the last decade. However, effort has been made to overcome its main shortcoming, i.e., efficiency and exhaust emission characteristics (NOx emissions) in unmodified diesel engines. Biodiesel combustion generally results in lower unburned hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM) in exhaust emissions compared to fossil diesel. In this study, various biodiesel blends ( Chlorella vulgaris, Jatropha curcus, and Calophyllum inophyllum ) were investigated for fuel characteristics, and engine performance with exhaust emission compared to diesel. Chlorella vulgaris , Jatropha curcus, and Calophyllum inophyllum biodiesel were synthesized by the acid–base transesterification approach in a microwave reactor and blended with conventional diesel fuel by volume. The fuel blends were denoted as MB10 (90% diesel + 10% microalgae biodiesel), MB20 (80% diesel + 20% microalgae biodiesel), JB10 (90% diesel + 10% jatropha biodiesel), JB20 (80% diesel + 20% jatropha biodiesel), PB10 (90% diesel + 10% polanga biodiesel) and PB20 (80% diesel + 20% polanga biodiesel). Experiments were performed using these fuel blends with a single-cylinder four-stroke diesel engine at different loads. It was shown in the results that, at rated load, thermal efficiency of the engine decreased from 34.6% with diesel to 34.1%, 33.7%, 34.1%, 34.0%, 33.9%, and 33.5% with MB10, MB20, JB10, JB20, PB10, and PB20 fuels, respectively. Unburned hydrocarbon, carbon monoxide and smoke emissions improved with third-generation fuels (MB10, MB20) in comparison to base diesel fuel and second-generation fuels (JB10, JB20, PB10 and PB20). Oxides of nitrogen emissions were slightly increased with both the third- and second-generation fuels as compared to the base diesel. The combustion behavior of microalgae biodiesel was also very close to diesel fuels. In the context of comparable engine performance, emissions, and combustion characteristics, along with biofuel production yield (per year per acre), microalgae biodiesel could have a great potential as a next-generation sustainable fuel in compression engine (CI) engines compared to jatropha and polanga biodiesel fuels.

Suggested Citation

  • Amit Kumar Sharma & Pankaj Kumar Sharma & Venkateswarlu Chintala & Narayan Khatri & Alok Patel, 2020. "Environment-Friendly Biodiesel/Diesel Blends for Improving the Exhaust Emission and Engine Performance to Reduce the Pollutants Emitted from Transportation Fleets," IJERPH, MDPI, vol. 17(11), pages 1-18, May.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:3896-:d:365341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/11/3896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/11/3896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kandasamy, Senthil Kumar & Selvaraj, Arun Saco & Rajagopal, Thundil Karuppa Raj, 2019. "Experimental investigations of ethanol blended biodiesel fuel on automotive diesel engine performance, emission and durability characteristics," Renewable Energy, Elsevier, vol. 141(C), pages 411-419.
    2. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
    3. Maranduba, Henrique Leonardo & Robra, Sabine & Nascimento, Iracema Andrade & da Cruz, Rosenira Serpa & Rodrigues, Luciano Brito & Almeida Neto, José Adolfo de, 2016. "Improving the energy balance of microalgae biodiesel: Synergy with an autonomous sugarcane ethanol distillery," Energy, Elsevier, vol. 115(P1), pages 888-895.
    4. Chintala, Venkateswarlu & Subramanian, K.A., 2016. "CFD analysis on effect of localized in-cylinder temperature on nitric oxide (NO) emission in a compression ignition engine under hydrogen-diesel dual-fuel mode," Energy, Elsevier, vol. 116(P1), pages 470-488.
    5. Scarlat, Nicolae & Dallemand, Jean-François & Monforti-Ferrario, Fabio & Banja, Manjola & Motola, Vincenzo, 2015. "Renewable energy policy framework and bioenergy contribution in the European Union – An overview from National Renewable Energy Action Plans and Progress Reports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 969-985.
    6. Saddam H. Al-lwayzy & Talal Yusaf & Raed A. Al-Juboori, 2014. "Biofuels from the Fresh Water Microalgae Chlorella vulgaris (FWM-CV) for Diesel Engines," Energies, MDPI, vol. 7(3), pages 1-23, March.
    7. Al-lwayzy, Saddam H. & Yusaf, Talal, 2017. "Diesel engine performance and exhaust gas emissions using Microalgae Chlorella protothecoides biodiesel," Renewable Energy, Elsevier, vol. 101(C), pages 690-701.
    8. Chintala, V. & Subramanian, K.A., 2015. "Experimental investigations on effect of different compression ratios on enhancement of maximum hydrogen energy share in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 87(C), pages 448-462.
    9. Patel, Alok & Arora, Neha & Sartaj, Km & Pruthi, Vikas & Pruthi, Parul A., 2016. "Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 836-855.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishna Moorthy Rajendran & Deepak Kumar & Bhawna Yadav Lamba & Praveen Kumar Ghodke & Amit Kumar Sharma & Leonidas Matsakas & Alok Patel, 2023. "Effect of Plasto-Oil Blended with Diesel Fuel on the Performance and Emission Characteristics of Partly Premixed Charge Compression Ignition Engines with and without Exhaust Gas Recirculation (EGR)," Energies, MDPI, vol. 16(9), pages 1-15, April.
    2. Amit Kumar Sharma & Pradeepta Kumar Sahoo & Mainak Mukherjee & Alok Patel, 2022. "Assessment of Sustainable Biogas Production from Co-Digestion of Jatropha De-Oiled Cake and Cattle Dung Using Floating Drum Type Digester under Psychrophilic and Mesophilic Conditions," Clean Technol., MDPI, vol. 4(2), pages 1-13, June.
    3. Aliru O. Mustapha & Rasidat A. Adepoju & Rofiat Y. Ajiboye & Yemisi T. Afolabi & Samsudeen O Azeez & Abdulfatai T Ajiboye, 2021. "Improvement of Fuel properties and Fatty Acid Composition of Biodiesel from Waste Cooking Oil after Refining Processes," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 8(4), pages 80-87, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    2. Chintala, V. & Subramanian, K.A., 2017. "Experimental investigation of autoignition of hydrogen-air charge in a compression ignition engine under dual-fuel mode," Energy, Elsevier, vol. 138(C), pages 197-209.
    3. Patel, Alok & Arora, Neha & Mehtani, Juhi & Pruthi, Vikas & Pruthi, Parul A., 2017. "Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 604-616.
    4. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    5. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    6. M Krishnamoorthi & R Malayalamurthi, 2018. "Effect of exhaust gas recirculation and charge inlet temperature on performance, combustion, and emission characteristics of diesel engine with bael oil blends," Energy & Environment, , vol. 29(3), pages 372-391, May.
    7. Yilmaz, I.T. & Gumus, M., 2018. "Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine," Energy, Elsevier, vol. 142(C), pages 1104-1113.
    8. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    9. Kim, Hyung Jun & Jo, Seongin & Lee, Jong-Tae & Park, Suhan, 2020. "Biodiesel fueled combustion performance and emission characteristics under various intake air temperature and injection timing conditions," Energy, Elsevier, vol. 206(C).
    10. Ditl, Pavel, 2022. "Estimating the limits of renewable energy from phytomass," Energy, Elsevier, vol. 238(PC).
    11. Md Modassir Khan & Arun Kumar Kadian & Rabindra Prasad Sharma & S M Mozammil Hasnain & Ahmed Mohamed & Adham E. Ragab & Ali Zare & Shatrudhan Pandey, 2023. "Emission Reduction and Performance Enhancement of CI Engine Propelled by Neem Biodiesel-Neem Oil-Decanol-Diesel Blends at High Injection Pressure," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
    12. Qiang Li & Rasool Kamal & Qian Wang & Xue Yu & Zongbao Kent Zhao, 2020. "Lipid Production from Amino Acid Wastes by the Oleaginous Yeast Rhodosporidium toruloides," Energies, MDPI, vol. 13(7), pages 1-9, April.
    13. Siwina, Siraprapha & Leesing, Ratanaporn, 2021. "Bioconversion of durian (Durio zibethinus Murr.) peel hydrolysate into biodiesel by newly isolated oleaginous yeast Rhodotorula mucilaginosa KKUSY14," Renewable Energy, Elsevier, vol. 163(C), pages 237-245.
    14. Li, Hao & Song, Chonglin & Lv, Gang & Pang, Huating & Qiao, Yuehan, 2017. "Assessment of the impact of post-injection on exhaust pollutants emitted from a diesel engine fueled with biodiesel," Renewable Energy, Elsevier, vol. 114(PB), pages 924-933.
    15. Upendra Rajak & Abhishek Dasore & Prem Kumar Chaurasiya & Tikendra Nath Verma & Prerana Nashine & Anil Kumar, 2023. "Effects of microalgae -ethanol-methanol-diesel blends on the spray characteristics and emissions of a diesel engine," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 1-22, January.
    16. Ko, Ja Kyong & Lee, Jae Hoon & Jung, Je Hyeong & Lee, Sun-Mi, 2020. "Recent advances and future directions in plant and yeast engineering to improve lignocellulosic biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Kim, Tae-Hyoung & Lee, Kyungho & Oh, Baek-Rock & Lee, Mi-Eun & Seo, Minji & Li, Sheng & Kim, Jae-Kon & Choi, Minkee & Chang, Yong Keun, 2021. "A novel process for the coproduction of biojet fuel and high-value polyunsaturated fatty acid esters from heterotrophic microalgae Schizochytrium sp. ABC101," Renewable Energy, Elsevier, vol. 165(P1), pages 481-490.
    18. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    19. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    20. Eduardo Polloni-Silva & Diogo Ferraz & Flávia de Castro Camioto & Daisy Aparecida do Nascimento Rebelatto & Herick Fernando Moralles, 2021. "Environmental Kuznets Curve and the Pollution-Halo/Haven Hypotheses: An Investigation in Brazilian Municipalities," Sustainability, MDPI, vol. 13(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:3896-:d:365341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.