IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i11p3788-d363418.html
   My bibliography  Save this article

A Study on Characteristic Emission Factors of Exhaust Gas from Diesel Locomotives

Author

Listed:
  • Min-Kyeong Kim

    (Future Innovative R&D Strategy Department, Korea Railroad Research Institute (KRRI), Uiwang 16105, Korea)

  • Duckshin Park

    (Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI), Uiwang 16105, Korea)

  • Minjeong Kim

    (Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI), Uiwang 16105, Korea)

  • Jaeseok Heo

    (Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI), Uiwang 16105, Korea
    Department of Transportation System Engineering, University of Science & Technology (UST), Daejeon 34113, Korea)

  • Sechan Park

    (Transportation Environmental Research Team, Korea Railroad Research Institute (KRRI), Uiwang 16105, Korea
    Department of Transportation System Engineering, University of Science & Technology (UST), Daejeon 34113, Korea)

  • Hwansoo Chong

    (Transportation Environmental Research Institute, National Institute of Environmental Research, Incheon 22689, Korea)

Abstract

Use of diesel locomotives in transport is gradually decreasing due to electrification and the introduction of high-speed electric rail. However, in Korea, up to 30% of the transportation of passengers and cargo still uses diesel locomotives and diesel vehicles. Many studies have shown that exhaust gas from diesel locomotives poses a threat to human health. This study examined the characteristics of particulate matter (PM), nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons in diesel locomotive engine exhaust. Emission concentrations were evaluated and compared with the existing regulations. In the case of PM and NOx, emission concentrations increased as engine output increased. High concentrations of CO were detected at engine start and acceleration, while hydrocarbons showed weakly increased concentrations regardless of engine power. Based on fuel consumption and engine power, the emission patterns of PM and gaseous substances observed in this study were slightly higher than the U.S. Environmental Protection Agency Tier standard and the Korean emission standard. Continuous monitoring and management of emissions from diesel locomotives are required to comply with emission standards. The findings of this study revealed that emission factors varied based on fuel consumption, engine power, and actual driving patterns. For the first time, a portable emission measurement system (PEMS), normally used to measure exhaust gas from diesel vehicles, was used to measure exhaust gas from diesel locomotives, and the data acquired were compared with previous results. This study is meaningful as the first example of measuring the exhaust gas concentration by connecting a PEMS to a diesel locomotive, and in the future, a study to measure driving characteristics and exhaust gas using a PEMS should be conducted.

Suggested Citation

  • Min-Kyeong Kim & Duckshin Park & Minjeong Kim & Jaeseok Heo & Sechan Park & Hwansoo Chong, 2020. "A Study on Characteristic Emission Factors of Exhaust Gas from Diesel Locomotives," IJERPH, MDPI, vol. 17(11), pages 1-12, May.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:3788-:d:363418
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/11/3788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/11/3788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarvi, A. & Zevenhoven, R., 2010. "Large-scale diesel engine emission control parameters," Energy, Elsevier, vol. 35(2), pages 1139-1145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barouch Giechaskiel & Tobias Jakobsson & Hua Lu Karlsson & M. Yusuf Khan & Linus Kronlund & Yoshinori Otsuki & Jürgen Bredenbeck & Stefan Handler-Matejka, 2022. "Assessment of On-Board and Laboratory Gas Measurement Systems for Future Heavy-Duty Emissions Regulations," IJERPH, MDPI, vol. 19(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhou & Aifang Shao & Haiqiao Wei & Xi Chen, 2017. "Sensitivity Analysis of Heavy Fuel Oil Spray and Combustion under Low-Speed Marine Engine-Like Conditions," Energies, MDPI, vol. 10(8), pages 1-19, August.
    2. Ramalingam, Senthil & Rajendran, Silambarasan & Ganesan, Pranesh, 2018. "Performance improvement and exhaust emissions reduction in biodiesel operated diesel engine through the use of operating parameters and catalytic converter: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3215-3222.
    3. Gonca, Guven & Sahin, Bahri & Ust, Yasin, 2013. "Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version," Energy, Elsevier, vol. 54(C), pages 285-290.
    4. Zhu, Mingming & Ma, Yu & Zhang, Dongke, 2011. "An experimental study of the effect of a homogeneous combustion catalyst on fuel consumption and smoke emission in a diesel engine," Energy, Elsevier, vol. 36(10), pages 6004-6009.
    5. Payri, F. & Broatch, A. & Serrano, J.R. & Piqueras, P., 2011. "Experimental–theoretical methodology for determination of inertial pressure drop distribution and pore structure properties in wall-flow diesel particulate filters (DPFs)," Energy, Elsevier, vol. 36(12), pages 6731-6744.
    6. Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    7. Galindo, José & Serrano, José Ramón & Piqueras, Pedro & García-Afonso, Óscar, 2012. "Heat transfer modelling in honeycomb wall-flow diesel particulate filters," Energy, Elsevier, vol. 43(1), pages 201-213.
    8. Sakellaridis, Nikolaos F. & Raptotasios, Spyridon I. & Antonopoulos, Antonis K. & Mavropoulos, Georgios C. & Hountalas, Dimitrios T., 2015. "Development and validation of a new turbocharger simulation methodology for marine two stroke diesel engine modelling and diagnostic applications," Energy, Elsevier, vol. 91(C), pages 952-966.
    9. Tsuneyoshi, Koji & Yamamoto, Kazuhiro, 2012. "A study on the cell structure and the performances of wall-flow diesel particulate filter," Energy, Elsevier, vol. 48(1), pages 492-499.
    10. Shin, Yoon Hyuk & Kim, Sung Chul & Kim, Min Soo, 2013. "Use of electromagnetic clutch water pumps in vehicle engine cooling systems to reduce fuel consumption," Energy, Elsevier, vol. 57(C), pages 624-631.
    11. Seok, Jungmin & Chun, Kwang Min & Song, Soonho & Lee, Jeongmin, 2014. "An empirical study of the dry soot filtration behavior of a metal foam filter on a particle number concentration basis," Energy, Elsevier, vol. 76(C), pages 949-957.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:3788-:d:363418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.