IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i9p225-d625558.html
   My bibliography  Save this article

Spatiotemporal Traffic Prediction Using Hierarchical Bayesian Modeling

Author

Listed:
  • Taghreed Alghamdi

    (Faculty of Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
    These authors contributed equally to this work.)

  • Khalid Elgazzar

    (Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada
    These authors contributed equally to this work.)

  • Taysseer Sharaf

    (Data Scientist, Canton, MI 4818, USA)

Abstract

Hierarchical Bayesian models (HBM) are powerful tools that can be used for spatiotemporal analysis. The hierarchy feature associated with Bayesian modeling enhances the accuracy and precision of spatiotemporal predictions. This paper leverages the hierarchy of the Bayesian approach using the three models; the Gaussian process (GP), autoregressive (AR), and Gaussian predictive processes (GPP) to predict long-term traffic status in urban settings. These models are applied on two different datasets with missing observation. In terms of modeling sparse datasets, the GPP model outperforms the other models. However, the GPP model is not applicable for modeling data with spatial points close to each other. The AR model outperforms the GP models in terms of temporal forecasting. The GP model is used with different covariance matrices: exponential, Gaussian, spherical, and Matérn to capture the spatial correlation. The exponential covariance yields the best precision in spatial analysis with the Gaussian process, while the Gaussian covariance outperforms the others in temporal forecasting.

Suggested Citation

  • Taghreed Alghamdi & Khalid Elgazzar & Taysseer Sharaf, 2021. "Spatiotemporal Traffic Prediction Using Hierarchical Bayesian Modeling," Future Internet, MDPI, vol. 13(9), pages 1-18, August.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:9:p:225-:d:625558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/9/225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/9/225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848, September.
    2. Zhanguo Song & Yanyong Guo & Yao Wu & Jing Ma, 2019. "Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-19, June.
    3. Richard Paap, 2002. "What are the advantages of MCMC based inference in latent variable models?," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 56(1), pages 2-22, February.
    4. Selby, Brent & Kockelman, Kara M., 2013. "Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 29(C), pages 24-32.
    5. S. Davies & P. Hall, 1999. "Fractal analysis of surface roughness by using spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 3-37.
    6. Saha, Arpita & Chakraborty, Souvik & Chandra, Satish & Ghosh, Indrajit, 2018. "Kriging based saturation flow models for traffic conditions in Indian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 38-51.
    7. Wikle C. K. & Milliff R. F. & Nychka D. & Berliner L.M., 2001. "Spatiotemporal Hierarchical Bayesian Modeling Tropical Ocean Surface Winds," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 382-397, June.
    8. Christopher K. Wikle, 2003. "Hierarchical Models in Environmental Science," International Statistical Review, International Statistical Institute, vol. 71(2), pages 181-199, August.
    9. Lindgren, Finn & Rue, Håvard, 2015. "Bayesian Spatial Modelling with R-INLA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i19).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    2. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    3. Zhang, Weitao & Arhonditsis, George B., 2009. "A Bayesian hierarchical framework for calibrating aquatic biogeochemical models," Ecological Modelling, Elsevier, vol. 220(18), pages 2142-2161.
    4. Taghreed Alghamdi & Sifatul Mostafi & Ghadeer Abdelkader & Khalid Elgazzar, 2022. "A Comparative Study on Traffic Modeling Techniques for Predicting and Simulating Traffic Behavior," Future Internet, MDPI, vol. 14(10), pages 1-21, October.
    5. Maia, Mateus & Murphy, Keefe & Parnell, Andrew C., 2024. "GP-BART: A novel Bayesian additive regression trees approach using Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    6. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    7. Peter A. Gao & Hannah M. Director & Cecilia M. Bitz & Adrian E. Raftery, 2022. "Probabilistic Forecasts of Arctic Sea Ice Thickness," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 280-302, June.
    8. Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    9. Zaouche, Mounia & Bode, Nikolai W.F., 2023. "Bayesian spatio-temporal models for mapping urban pedestrian traffic," Journal of Transport Geography, Elsevier, vol. 111(C).
    10. Pulugurtha, Srinivas S. & Mathew, Sonu, 2021. "Modeling AADT on local functionally classified roads using land use, road density, and nearest nonlocal road data," Journal of Transport Geography, Elsevier, vol. 93(C).
    11. Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    12. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    13. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    14. Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    15. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    16. Petar Soric & Enric Monte & Salvador Torra & Oscar Claveria, 2022. ""Density forecasts of inflation using Gaussian process regression models"," IREA Working Papers 202210, University of Barcelona, Research Institute of Applied Economics, revised Jul 2022.
    17. Sun, Ying & Chang, Xiaohui & Guan, Yongtao, 2018. "Flexible and efficient estimating equations for variogram estimation," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 45-58.
    18. Layla Höckerstedt & Elina Numminen & Ben Ashby & Mike Boots & Anna Norberg & Anna-Liisa Laine, 2022. "Spatially structured eco-evolutionary dynamics in a host-pathogen interaction render isolated populations vulnerable to disease," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Bakar, Khandoker Shuvo & Sahu, Sujit K., 2015. "spTimer: Spatio-Temporal Bayesian Modeling Using R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i15).
    20. Caamaño-Carrillo, Christian & Bevilacqua, Moreno & López, Cristian & Morales-Oñate, Víctor, 2024. "Nearest neighbors weighted composite likelihood based on pairs for (non-)Gaussian massive spatial data with an application to Tukey-hh random fields estimation," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:9:p:225-:d:625558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.