IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v122y2018icp45-58.html
   My bibliography  Save this article

Flexible and efficient estimating equations for variogram estimation

Author

Listed:
  • Sun, Ying
  • Chang, Xiaohui
  • Guan, Yongtao

Abstract

Variogram estimation plays a vastly important role in spatial modeling. Different methods for variogram estimation can be largely classified into least squares methods and likelihood based methods. A general framework to estimate the variogram through a set of estimating equations is proposed. This approach serves as an alternative approach to likelihood based methods and includes commonly used least squares approaches as its special cases. The proposed method is highly efficient as a low dimensional representation of the weight matrix is employed. The statistical efficiency of various estimators is explored and the lag effect is examined. An application to a hydrology data set is also presented.

Suggested Citation

  • Sun, Ying & Chang, Xiaohui & Guan, Yongtao, 2018. "Flexible and efficient estimating equations for variogram estimation," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 45-58.
  • Handle: RePEc:eee:csdana:v:122:y:2018:i:c:p:45-58
    DOI: 10.1016/j.csda.2017.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731830001X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Davies & P. Hall, 1999. "Fractal analysis of surface roughness by using spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 3-37.
    2. Kaufman, Cari G. & Schervish, Mark J. & Nychka, Douglas W., 2008. "Covariance Tapering for Likelihood-Based Estimation in Large Spatial Data Sets," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1545-1555.
    3. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    4. Müller, Werner G., 1999. "Least-squares fitting from the variogram cloud," Statistics & Probability Letters, Elsevier, vol. 43(1), pages 93-98, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Acosta, Jonathan & Alegría, Alfredo & Osorio, Felipe & Vallejos, Ronny, 2021. "Assessing the effective sample size for large spatial datasets: A block likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    2. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    3. Hong, Yiping & Zhou, Zaiying & Yang, Ying, 2020. "Hypothesis testing for the smoothness parameter of Matérn covariance model on a regular grid," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    4. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    5. Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
    6. Si Cheng & Bledar A. Konomi & Georgios Karagiannis & Emily L. Kang, 2024. "Recursive nearest neighbor co‐kriging models for big multi‐fidelity spatial data sets," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.
    7. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    8. Guhaniyogi, Rajarshi & Banerjee, Sudipto, 2019. "Multivariate spatial meta kriging," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 3-8.
    9. Wu, Wei-Ying & Lim, Chae Young & Xiao, Yimin, 2013. "Tail estimation of the spectral density for a stationary Gaussian random field," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 74-91.
    10. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    11. Roman Flury & Reinhard Furrer, 2021. "Discussion on Competition for Spatial Statistics for Large Datasets," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 599-603, December.
    12. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    13. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    14. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    15. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    16. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    17. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    18. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    19. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    20. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:122:y:2018:i:c:p:45-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.