IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i10p294-d943168.html
   My bibliography  Save this article

A Comparative Study on Traffic Modeling Techniques for Predicting and Simulating Traffic Behavior

Author

Listed:
  • Taghreed Alghamdi

    (Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada)

  • Sifatul Mostafi

    (Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada)

  • Ghadeer Abdelkader

    (Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada)

  • Khalid Elgazzar

    (Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, ON L1G 0C5, Canada)

Abstract

The significant advancements in intelligent transportation systems (ITS) have contributed to the increased development in traffic modeling. These advancements include prediction and simulation models that are used to simulate and predict traffic behaviors on highway roads and urban networks. These models are capable of precise modeling of the current traffic status and accurate predictions of the future status based on varying traffic conditions. However, selecting the appropriate traffic model for a specific environmental setting is challenging and expensive due to the different requirements that need to be considered, such as accuracy, performance, and efficiency. In this research, we present a comprehensive literature review of the research related to traffic prediction and simulation models. We start by highlighting the challenges in the long-term and short-term prediction of traffic modeling. Then, we review the most common nonparametric prediction models. Lastly, we look into the existing literature on traffic simulation tools and traffic simulation algorithms. We summarize the available traffic models, define the required parameters, and discuss the limitations of each model. We hope that this survey serves as a useful resource for traffic management engineers, researchers, and practitioners in this domain.

Suggested Citation

  • Taghreed Alghamdi & Sifatul Mostafi & Ghadeer Abdelkader & Khalid Elgazzar, 2022. "A Comparative Study on Traffic Modeling Techniques for Predicting and Simulating Traffic Behavior," Future Internet, MDPI, vol. 14(10), pages 1-21, October.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:10:p:294-:d:943168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/10/294/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/10/294/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pete Sykes, 2010. "Traffic Simulation with Paramics," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 131-171, Springer.
    2. Martin Fellendorf & Peter Vortisch, 2010. "Microscopic Traffic Flow Simulator VISSIM," International Series in Operations Research & Management Science, in: Jaume Barceló (ed.), Fundamentals of Traffic Simulation, chapter 0, pages 63-93, Springer.
    3. Zhanguo Song & Yanyong Guo & Yao Wu & Jing Ma, 2019. "Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-19, June.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Aditya R. Raikwar & Rahul R. Sadawarte & Rishikesh G. More & Rutuja S. Gunjal & Parikshit N. Mahalle & Poonam N. Railkar, 2017. "Long-Term and Short-Term Traffic Forecasting Using Holt-Winters Method: A Comparability Approach with Comparable Data in Multiple Seasons," International Journal of Synthetic Emotions (IJSE), IGI Global, vol. 8(2), pages 38-50, July.
    6. Ricardo A. Daziano & Luis Miranda-Moreno & Shahram Heydari, 2013. "Computational Bayesian Statistics in Transportation Modeling: From Road Safety Analysis to Discrete Choice," Transport Reviews, Taylor & Francis Journals, vol. 33(5), pages 570-592, September.
    7. Reisen, Valdério A. & Zamprogno, Bartolomeu & Palma, Wilfredo & Arteche, Josu, 2014. "A semiparametric approach to estimate two seasonal fractional parameters in the SARFIMA model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 1-17.
    8. Yin, Yi & Shang, Pengjian, 2016. "Forecasting traffic time series with multivariate predicting method," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 266-278.
    9. Selby, Brent & Kockelman, Kara M., 2013. "Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 29(C), pages 24-32.
    10. Gipps, P. G., 1986. "A model for the structure of lane-changing decisions," Transportation Research Part B: Methodological, Elsevier, vol. 20(5), pages 403-414, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lunacek, Monte & Williams, Lindy & Severino, Joseph & Ficenec, Karen & Ugirumurera, Juliette & Eash, Matthew & Ge, Yanbo & Phillips, Caleb, 2021. "A data-driven operational model for traffic at the Dallas Fort Worth International Airport," Journal of Air Transport Management, Elsevier, vol. 94(C).
    2. Taghreed Alghamdi & Khalid Elgazzar & Taysseer Sharaf, 2021. "Spatiotemporal Traffic Prediction Using Hierarchical Bayesian Modeling," Future Internet, MDPI, vol. 13(9), pages 1-18, August.
    3. Lv, Wei & Song, Wei-guo & Liu, Xiao-dong & Ma, Jian, 2013. "A microscopic lane changing process model for multilane traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1142-1152.
    4. Zaouche, Mounia & Bode, Nikolai W.F., 2023. "Bayesian spatio-temporal models for mapping urban pedestrian traffic," Journal of Transport Geography, Elsevier, vol. 111(C).
    5. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    6. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    7. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    8. Pulugurtha, Srinivas S. & Mathew, Sonu, 2021. "Modeling AADT on local functionally classified roads using land use, road density, and nearest nonlocal road data," Journal of Transport Geography, Elsevier, vol. 93(C).
    9. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    10. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    11. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    12. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    13. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    14. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    15. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    16. repec:jss:jstsof:21:i08 is not listed on IDEAS
    17. Deng, Yaguo, 2016. "Efficiency evaluation of Spanish hotel chains," DES - Working Papers. Statistics and Econometrics. WS 23897, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    19. Makoto Chikaraishi & Akimasa Fujiwara & Junyi Zhang & Kay Axhausen, 2011. "Identifying variations and co-variations in discrete choice models," Transportation, Springer, vol. 38(6), pages 993-1016, November.
    20. Galatia Cleanthous & Emilio Porcu & Philip White, 2021. "Regularity and approximation of Gaussian random fields evolving temporally over compact two-point homogeneous spaces," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 836-860, December.
    21. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2021. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Efficiency Series Papers 2021/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:10:p:294-:d:943168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.