IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i18p2142-2161.html
   My bibliography  Save this article

A Bayesian hierarchical framework for calibrating aquatic biogeochemical models

Author

Listed:
  • Zhang, Weitao
  • Arhonditsis, George B.

Abstract

Model practitioners increasingly place emphasis on rigorous quantitative error analysis in aquatic biogeochemical models and the existing initiatives range from the development of alternative metrics for goodness of fit, to data assimilation into operational models, to parameter estimation techniques. However, the treatment of error in many of these efforts is arguably selective and/or ad hoc. A Bayesian hierarchical framework enables the development of robust probabilistic analysis of error and uncertainty in model predictions by explicitly accommodating measurement error, parameter uncertainty, and model structure imperfection. This paper presents a Bayesian hierarchical formulation for simultaneously calibrating aquatic biogeochemical models at multiple systems (or sites of the same system) with differences in their trophic conditions, prior precisions of model parameters, available information, measurement error or inter-annual variability. Our statistical formulation also explicitly considers the uncertainty in model inputs (model parameters, initial conditions), the analytical/sampling error associated with the field data, and the discrepancy between model structure and the natural system dynamics (e.g., missing key ecological processes, erroneous formulations, misspecified forcing functions). The comparison between observations and posterior predictive monthly distributions indicates that the plankton models calibrated under the Bayesian hierarchical scheme provided accurate system representations for all the scenarios examined. Our results also suggest that the Bayesian hierarchical approach allows overcoming problems of insufficient local data by “borrowing strength” from well-studied sites and this feature will be highly relevant to conservation practices of regions with a high number of freshwater resources for which complete data could never be practically collected. Finally, we discuss the prospect of extending this framework to spatially explicit biogeochemical models (e.g., more effectively connect inshore with offshore areas) along with the benefits for environmental management, such as the optimization of the sampling design of monitoring programs and the alignment with the policy practice of adaptive management.

Suggested Citation

  • Zhang, Weitao & Arhonditsis, George B., 2009. "A Bayesian hierarchical framework for calibrating aquatic biogeochemical models," Ecological Modelling, Elsevier, vol. 220(18), pages 2142-2161.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:18:p:2142-2161
    DOI: 10.1016/j.ecolmodel.2009.05.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009003925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.05.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wikle C. K. & Milliff R. F. & Nychka D. & Berliner L.M., 2001. "Spatiotemporal Hierarchical Bayesian Modeling Tropical Ocean Surface Winds," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 382-397, June.
    2. Christopher K. Wikle, 2003. "Hierarchical Models in Environmental Science," International Statistical Review, International Statistical Institute, vol. 71(2), pages 181-199, August.
    3. Arhonditsis, George B. & Qian, Song S. & Stow, Craig A. & Lamon, E. Conrad & Reckhow, Kenneth H., 2007. "Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake," Ecological Modelling, Elsevier, vol. 208(2), pages 215-229.
    4. C. D. Thomas & E. J. Bodsworth & R. J. Wilson & A. D. Simmons & Z. G. Davies & M. Musche & L. Conradt, 2001. "Ecological and evolutionary processes at expanding range margins," Nature, Nature, vol. 411(6837), pages 577-581, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Likun & Zhao, Xinhua & Peng, Sen & Li, Xia, 2016. "Water quality assessment analysis by using combination of Bayesian and genetic algorithm approach in an urban lake, China," Ecological Modelling, Elsevier, vol. 339(C), pages 77-88.
    2. Li, Yuzhao & Liu, Yong & Zhao, Lei & Hastings, Alan & Guo, Huaicheng, 2015. "Exploring change of internal nutrients cycling in a shallow lake: A dynamic nutrient driven phytoplankton model," Ecological Modelling, Elsevier, vol. 313(C), pages 137-148.
    3. Viswanathan, Michelle & Scheidegger, Andreas & Streck, Thilo & Gayler, Sebastian & Weber, Tobias K.D., 2022. "Bayesian multi-level calibration of a process-based maize phenology model," Ecological Modelling, Elsevier, vol. 474(C).
    4. Willis, Jay, 2011. "Modelling swimming aquatic animals in hydrodynamic models," Ecological Modelling, Elsevier, vol. 222(23), pages 3869-3887.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Law, Tony & Zhang, Weitao & Zhao, Jingyang & Arhonditsis, George B., 2009. "Structural changes in lake functioning induced from nutrient loading and climate variability," Ecological Modelling, Elsevier, vol. 220(7), pages 979-997.
    2. Taghreed Alghamdi & Khalid Elgazzar & Taysseer Sharaf, 2021. "Spatiotemporal Traffic Prediction Using Hierarchical Bayesian Modeling," Future Internet, MDPI, vol. 13(9), pages 1-18, August.
    3. Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    4. Wesley R. Brooks & Stephen C. Newbold, 2013. "Ecosystem damages in integrated assessment models of climate change," NCEE Working Paper Series 201302, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Mar 2013.
    5. Lindim, C. & Pinho, J.L. & Vieira, J.M.P., 2011. "Analysis of spatial and temporal patterns in a large reservoir using water quality and hydrodynamic modeling," Ecological Modelling, Elsevier, vol. 222(14), pages 2485-2494.
    6. Chaianunporn, Thotsapol & Hovestadt, Thomas, 2012. "Concurrent evolution of random dispersal and habitat niche width in host-parasitoid systems," Ecological Modelling, Elsevier, vol. 247(C), pages 241-250.
    7. Xu, Yanhong & Peng, Hong & Yang, Yinqun & Zhang, Wanshun & Wang, Shuangling, 2014. "A cumulative eutrophication risk evaluation method based on a bioaccumulation model," Ecological Modelling, Elsevier, vol. 289(C), pages 77-85.
    8. Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
    9. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    10. Maura Mezzetti, 2012. "Bayesian factor analysis for spatially correlated data: application to cancer incidence data in Scotland," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 49-74, March.
    11. Kim, Dong-Kyun & Zhang, Weitao & Rao, Yerubandi R. & Watson, Sue & Mugalingam, Shan & Labencki, Tanya & Dittrich, Maria & Morley, Andrew & Arhonditsis, George B., 2013. "Improving the representation of internal nutrient recycling with phosphorus mass balance models: A case study in the Bay of Quinte, Ontario, Canada," Ecological Modelling, Elsevier, vol. 256(C), pages 53-68.
    12. Guillermo Ferreira & Jorge Mateu & Emilio Porcu, 2018. "Spatio-temporal analysis with short- and long-memory dependence: a state-space approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 221-245, March.
    13. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    14. Haruko M. Wainwright & Rusen Oktem & Baptiste Dafflon & Sigrid Dengel & John B. Curtis & Margaret S. Torn & Jessica Cherry & Susan S. Hubbard, 2021. "High-Resolution Spatio-Temporal Estimation of Net Ecosystem Exchange in Ice-Wedge Polygon Tundra Using In Situ Sensors and Remote Sensing Data," Land, MDPI, vol. 10(7), pages 1-19, July.
    15. William A. Link & J. Andrew Royle & Jeff S. Hatfield, 2003. "Demographic Analysis from Summaries of an Age-Structured Population," Biometrics, The International Biometric Society, vol. 59(4), pages 778-785, December.
    16. Bakian, Amanda V. & Sullivan, Kimberly A. & Paxton, Eben H., 2012. "Elucidating spatially explicit behavioral landscapes in the Willow Flycatcher," Ecological Modelling, Elsevier, vol. 232(C), pages 119-132.
    17. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    18. Bourgeois, A. & Gaba, S. & Munier-Jolain, N. & Borgy, B. & Monestiez, P. & Soubeyrand, S., 2012. "Inferring weed spatial distribution from multi-type data," Ecological Modelling, Elsevier, vol. 226(C), pages 92-98.
    19. McDonald, C.P. & Bennington, V. & Urban, N.R. & McKinley, G.A., 2012. "1-D test-bed calibration of a 3-D Lake Superior biogeochemical model," Ecological Modelling, Elsevier, vol. 225(C), pages 115-126.
    20. Springborn, Michael & Sanchirico, James N., 2013. "A density projection approach for non-trivial information dynamics: Adaptive management of stochastic natural resources," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 609-624.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:18:p:2142-2161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.