IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v111y2023ics0966692323001199.html
   My bibliography  Save this article

Bayesian spatio-temporal models for mapping urban pedestrian traffic

Author

Listed:
  • Zaouche, Mounia
  • Bode, Nikolai W.F.

Abstract

Understanding the distribution of traffic in time and space over available infrastructure is a fundamental problem in transportation research. However, pedestrian activity is rarely mapped at fine resolution over large spatio-temporal scales, such as city centres, despite the fact that this information is crucial for assessing the effects of infrastructure changes, for supporting planning and policy formulation, and for estimating economic activity. Here we formulate Bayesian hierarchical spatio-temporal models to map pedestrian traffic based on publicly available pedestrian count data, properties of the street network, and features of the urban environment, such as nearby shops or public transport stops. We employ the accurate and computationally efficient Integrated Nested Laplace Approximation inference method combined with Stochastic Partial Differential Equations for spatial effects (INLA-SPDE) to calibrate models on a large hourly count data set from sensors installed across the city centre of Melbourne, Australia. Using this modelling paradigm, we demonstrate the importance of structured space–time and time-time interaction terms within models. These terms estimate how the relative busyness of locations changes over time or how peak traffic times vary across days, for example. We also show the relevance of built environment features, although their predictive capability is smaller than that of interaction terms, and we use our models to map the uncertainty of pedestrian traffic estimation based on data availability. Finally, we show, with reference to the example of the Covid-19 pandemic, how the Bayesian framework permits tracking changes in traffic dynamics over time. The flexibility of our models means they can be extended for further applications.

Suggested Citation

  • Zaouche, Mounia & Bode, Nikolai W.F., 2023. "Bayesian spatio-temporal models for mapping urban pedestrian traffic," Journal of Transport Geography, Elsevier, vol. 111(C).
  • Handle: RePEc:eee:jotrge:v:111:y:2023:i:c:s0966692323001199
    DOI: 10.1016/j.jtrangeo.2023.103647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692323001199
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2023.103647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kaisheng Zhang & Mei Wang & Bangyang Wei & Daniel (Jian) Sun, 2016. "Identification and Prediction of Large Pedestrian Flow in Urban Areas Based on a Hybrid Detection Approach," Sustainability, MDPI, vol. 9(1), pages 1-15, December.
    2. Huang, Jie & Levinson, David M., 2015. "Circuity in urban transit networks," Journal of Transport Geography, Elsevier, vol. 48(C), pages 145-153.
    3. Andrea Gilardi & Jorge Mateu & Riccardo Borgoni & Robin Lovelace, 2022. "Multivariate hierarchical analysis of car crashes data considering a spatial network lattice," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1150-1177, July.
    4. Xinwei Ma & Yanjie Ji & Yuchuan Jin & Jianbiao Wang & Mingjia He, 2018. "Modeling the Factors Influencing the Activity Spaces of Bikeshare around Metro Stations: A Spatial Regression Model," Sustainability, MDPI, vol. 10(11), pages 1-12, October.
    5. Selby, Brent & Kockelman, Kara M., 2013. "Spatial prediction of traffic levels in unmeasured locations: applications of universal kriging and geographically weighted regression," Journal of Transport Geography, Elsevier, vol. 29(C), pages 24-32.
    6. Lindgren, Finn & Rue, Håvard, 2015. "Bayesian Spatial Modelling with R-INLA," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i19).
    7. Crispin H. V. Cooper & Ian Harvey & Scott Orford & Alain J. F. Chiaradia, 2021. "Using multiple hybrid spatial design network analysis to predict longitudinal effect of a major city centre redevelopment on pedestrian flows," Transportation, Springer, vol. 48(2), pages 643-672, April.
    8. Guibo Sun & Chris Webster & Xiaohu Zhang, 2021. "Connecting the city: A three-dimensional pedestrian network of Hong Kong," Environment and Planning B, , vol. 48(1), pages 60-75, January.
    9. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    10. Pfiester, Laura Mali & Thompson, Russell G. & Zhang, Lele, 2021. "Spatiotemporal exploration of Melbourne pedestrian demand," Journal of Transport Geography, Elsevier, vol. 95(C).
    11. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    12. Giovanna Jona Lasinio & Gianluca Mastrantonio & Alessio Pollice, 2013. "Discussing the “big n problem”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 97-112, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Fernando Fonseca & Escolástica Fernandes & Rui Ramos, 2022. "Walkable Cities: Using the Smart Pedestrian Net Method for Evaluating a Pedestrian Network in Guimarães, Portugal," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    3. Zhang, Shen & Liu, Xin & Tang, Jinjun & Cheng, Shaowu & Qi, Yong & Wang, Yinhai, 2018. "Spatio-temporal modeling of destination choice behavior through the Bayesian hierarchical approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 537-551.
    4. John M. Humphreys, 2022. "Amplification in Time and Dilution in Space: Partitioning Spatiotemporal Processes to Assess the Role of Avian-Host Phylodiversity in Shaping Eastern Equine Encephalitis Virus Distribution," Geographies, MDPI, vol. 2(3), pages 1-16, July.
    5. Taghreed Alghamdi & Sifatul Mostafi & Ghadeer Abdelkader & Khalid Elgazzar, 2022. "A Comparative Study on Traffic Modeling Techniques for Predicting and Simulating Traffic Behavior," Future Internet, MDPI, vol. 14(10), pages 1-21, October.
    6. Carlos Díaz-Avalos & Pablo Juan & Somnath Chaudhuri & Marc Sáez & Laura Serra, 2020. "Association between the New COVID-19 Cases and Air Pollution with Meteorological Elements in Nine Counties of New York State," IJERPH, MDPI, vol. 17(23), pages 1-18, December.
    7. Deslatte, Aaron & Scott, Tyler A. & Carter, David P., 2019. "Specialized governance and regional land-use outcomes: A spatial analysis of Florida community development districts," Land Use Policy, Elsevier, vol. 83(C), pages 227-239.
    8. Chien-Chou Chen & Guo-Jun Lo & Ta-Chien Chan, 2022. "Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-12, May.
    9. Chiranjit Dutta & Nalini Ravishanker & Sumanta Basu, 2022. "Modeling Multivariate Positive-Valued Time Series Using R-INLA," Papers 2206.05374, arXiv.org, revised Jul 2022.
    10. Chao Song & Yaode Wang & Xiu Yang & Yili Yang & Zhangying Tang & Xiuli Wang & Jay Pan, 2020. "Spatial and Temporal Impacts of Socioeconomic and Environmental Factors on Healthcare Resources: A County-Level Bayesian Local Spatiotemporal Regression Modeling Study of Hospital Beds in Southwest Ch," IJERPH, MDPI, vol. 17(16), pages 1-23, August.
    11. Ropo E. Ogunsakin & Themba G. Ginindza, 2022. "Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey," IJERPH, MDPI, vol. 19(15), pages 1-17, July.
    12. Ali Arab, 2015. "Spatial and Spatio-Temporal Models for Modeling Epidemiological Data with Excess Zeros," IJERPH, MDPI, vol. 12(9), pages 1-13, August.
    13. Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.
    14. Chao Song & Yaqian He & Yanchen Bo & Jinfeng Wang & Zhoupeng Ren & Huibin Yang, 2018. "Risk Assessment and Mapping of Hand, Foot, and Mouth Disease at the County Level in Mainland China Using Spatiotemporal Zero-Inflated Bayesian Hierarchical Models," IJERPH, MDPI, vol. 15(7), pages 1-16, July.
    15. Zongyuan Xia & Bo Tang & Long Qin & Huiguo Zhang & Xijian Hu, 2023. "Spatially Dependent Bayesian Modeling of Geostatistics Data and Its Application for Tuberculosis (TB) in China," Mathematics, MDPI, vol. 11(19), pages 1-15, October.
    16. Taghreed Alghamdi & Khalid Elgazzar & Taysseer Sharaf, 2021. "Spatiotemporal Traffic Prediction Using Hierarchical Bayesian Modeling," Future Internet, MDPI, vol. 13(9), pages 1-18, August.
    17. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    18. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    19. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    20. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:111:y:2023:i:c:s0966692323001199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.