IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0218626.html
   My bibliography  Save this article

Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model

Author

Listed:
  • Zhanguo Song
  • Yanyong Guo
  • Yao Wu
  • Jing Ma

Abstract

Short-term traffic speed prediction is a key component of proactive traffic control in the intelligent transportation systems. The objective of this study is to investigate the short-term traffic speed prediction under different data collection time intervals. Traffic speed data was collected from an urban freeway in Edmonton, Canada. A seasonal autoregressive integrated moving average plus seasonal discrete grey model structure (SARIMA-SDGM) was proposed to perform the traffic speed prediction. The model performance of SARIMA-SDGM model was compared with that of the seasonal autoregressive integrated moving average (SARIMA) model, seasonal discrete grey model (SDGM), artificial neural network (ANN) model, and support vector regression (SVR) model. The results showed that SARIMA-SDGM model performs best with the lowest mean absolute error (MAE), mean absolute percentage error (MAPE), and the root mean square error (RMSE). The traffic speed prediction accuracy under different time intervals were compared based on the SARIMA-SDGM model. The results showed that the prediction accuracy improves with the increase in time interval. In addition, when the time interval is greater than 10 min, the prediction results yield stable prediction accuracy.

Suggested Citation

  • Zhanguo Song & Yanyong Guo & Yao Wu & Jing Ma, 2019. "Short-term traffic speed prediction under different data collection time intervals using a SARIMA-SDGM hybrid prediction model," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-19, June.
  • Handle: RePEc:plo:pone00:0218626
    DOI: 10.1371/journal.pone.0218626
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218626
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0218626&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0218626?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dougherty, Mark S. & Cobbett, Mark R., 1997. "Short-term inter-urban traffic forecasts using neural networks," International Journal of Forecasting, Elsevier, vol. 13(1), pages 21-31, March.
    2. Yanyong Guo & Yao Wu & Jian Lu & Jibiao Zhou, 2019. "Modeling the Unobserved Heterogeneity in E-bike Collision Severity Using Full Bayesian Random Parameters Multinomial Logit Regression," Sustainability, MDPI, vol. 11(7), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quang Hoc Tran & Yao-Min Fang & Tien-Yin Chou & Thanh-Van Hoang & Chun-Tse Wang & Van Truong Vu & Thi Lan Huong Ho & Quang Le & Mei-Hsin Chen, 2022. "Short-Term Traffic Speed Forecasting Model for a Parallel Multi-Lane Arterial Road Using GPS-Monitored Data Based on Deep Learning Approach," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    2. Taghreed Alghamdi & Sifatul Mostafi & Ghadeer Abdelkader & Khalid Elgazzar, 2022. "A Comparative Study on Traffic Modeling Techniques for Predicting and Simulating Traffic Behavior," Future Internet, MDPI, vol. 14(10), pages 1-21, October.
    3. Taghreed Alghamdi & Khalid Elgazzar & Taysseer Sharaf, 2021. "Spatiotemporal Traffic Prediction Using Hierarchical Bayesian Modeling," Future Internet, MDPI, vol. 13(9), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changxi Ma & Dong Yang & Jibiao Zhou & Zhongxiang Feng & Quan Yuan, 2019. "Risk Riding Behaviors of Urban E-Bikes: A Literature Review," IJERPH, MDPI, vol. 16(13), pages 1-18, June.
    2. Tao Cheng & James Haworth & Jiaqiu Wang, 2012. "Spatio-temporal autocorrelation of road network data," Journal of Geographical Systems, Springer, vol. 14(4), pages 389-413, October.
    3. Lu, Xijin & Ma, Changxi & Qiao, Yihuan, 2021. "Short-term demand forecasting for online car-hailing using ConvLSTM networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    4. Jibiao Zhou & Tao Zheng & Sheng Dong & Xinhua Mao & Changxi Ma, 2022. "Impact of Helmet-Wearing Policy on E-Bike Safety Riding Behavior: A Bivariate Ordered Probit Analysis in Ningbo, China," IJERPH, MDPI, vol. 19(5), pages 1-21, February.
    5. Basu, Debasis & Maitra, Swati Roy & Maitra, Bhargab, 2006. "Modelling passenger car equivalency at an urban midblock using stream speed as measure of equivalence," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 34, pages 75-87.
    6. Changxi Ma & Jibiao Zhou & Dong Yang & Yuanyuan Fan, 2020. "Research on the Relationship between the Individual Characteristics of Electric Bike Riders and Illegal Speeding Behavior: A Questionnaire-Based Study," Sustainability, MDPI, vol. 12(3), pages 1-12, January.
    7. Salvo, G. & Amato, G. & Zito, Pietro, 2007. "Bus speed estimation by neural networks to improve the automatic fleet management," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 37, pages 93-104.
    8. Wang, Chun & Zhang, Weihua & Wu, Cong & Hu, Heng & Ding, Heng & Zhu, Wenjia, 2022. "A traffic state recognition model based on feature map and deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    9. Gencay, Ramazan & Selcuk, Faruk, 2001. "Software reviews," International Journal of Forecasting, Elsevier, vol. 17(2), pages 305-317.
    10. Wang, Wei & Zhang, Hanyu & Li, Tong & Guo, Jianhua & Huang, Wei & Wei, Yun & Cao, Jinde, 2020. "An interpretable model for short term traffic flow prediction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 264-278.
    11. Jibiao Zhou & Xinhua Mao & Yiting Wang & Minjie Zhang & Sheng Dong, 2019. "Risk Assessment in Urban Large-Scale Public Spaces Using Dempster-Shafer Theory: An Empirical Study in Ningbo, China," IJERPH, MDPI, vol. 16(16), pages 1-28, August.
    12. Zhenggan Cai & Fulu Wei & Zhenyu Wang & Yongqing Guo & Long Chen & Xin Li, 2021. "Modeling of Low Visibility-Related Rural Single-Vehicle Crashes Considering Unobserved Heterogeneity and Spatial Correlation," Sustainability, MDPI, vol. 13(13), pages 1-24, July.
    13. He, Silu & Luo, Qinyao & Du, Ronghua & Zhao, Ling & He, Guangjun & Fu, Han & Li, Haifeng, 2023. "STGC-GNNs: A GNN-based traffic prediction framework with a spatial–temporal Granger causality graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    14. Chuanyun Fu & Hua Liu, 2020. "Investigating influence factors of traffic violations at signalized intersections using data gathered from traffic enforcement camera," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-20, March.
    15. Hilmi Berk Celikoglu & Mehmet Ali Silgu, 2016. "Extension of Traffic Flow Pattern Dynamic Classification by a Macroscopic Model Using Multivariate Clustering," Transportation Science, INFORMS, vol. 50(3), pages 966-981, August.
    16. Md Abul Ehsan Bhuiyan & Feifei Yang & Nishan Kumar Biswas & Saiful Haque Rahat & Tahneen Jahan Neelam, 2020. "Machine Learning-Based Error Modeling to Improve GPM IMERG Precipitation Product over the Brahmaputra River Basin," Forecasting, MDPI, vol. 2(3), pages 1-19, July.
    17. Kirby, Howard R. & Watson, Susan M. & Dougherty, Mark S., 1997. "Should we use neural networks or statistical models for short-term motorway traffic forecasting?," International Journal of Forecasting, Elsevier, vol. 13(1), pages 43-50, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0218626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.