IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v71y2003i2p181-199.html
   My bibliography  Save this article

Hierarchical Models in Environmental Science

Author

Listed:
  • Christopher K. Wikle

Abstract

Environmental systems are complicated. They include very intricate spatio‐temporal processes, interacting on a wide variety of scales. There is increasingly vast amounts of data for such processes from geographical information systems, remote sensing platforms, monitoring networks, and computer models. In addition, often there is a great variety of scientific knowledge available for such systems, from partial differential equations based on first principles to panel surveys. It is argued that it is not generally adequate to consider such processes from a joint perspective. Instead, the processes often must be considered as a coherently linked system of conditional models. This paper provides a brief overview of hierarchical approaches applied to environmental processes. The key elements of such models can be considered in three general stages, the data stage, process stage, and parameter stage. In each stage, complicated dependence structure is mitigated by conditioning. For example, the data stage can incorporate measurement errors as well as multiple datasets with varying supports. The process and parameter stages can allow spatial and spatio‐temporal processes as well as the direct inclusion of scientific knowledge. The paper concludes with a discussion of some outstanding problems in hierarchical modelling of environmental systems, including the need for new collaboration approaches. Les systèmes environnementaux sont complexes. Ils incluent des processus spatio‐temporels trés complexes, interagissant sur une large variété d'échelles. II existe des quantités de plus en plus grandes de données sur de tels processus, provenant des systèmes d'information géographiques, des plateformes de télédétection, des réseaux de surveillance et des modèles informatiques. De plus, il y a souvent une grande variété de connaissance scientifique disponible sur de tels systémes, depuis les équations différentielles partielles jusqu'aux enquétes de panels. II est reconnu qu'il n'est généralement pas correct de considerer de tels processus d'une perspective commune. Au contraire, les processus doivent souvent étre examinés comme des systèmes de modèles conditionnels liés de manière cohérente. Cet article fournit un bref aperçu des approches hiérachiques appliquées aux processus environnementaux. Les éléments clés de tels modèles peuvent étre examinés à trois étapes principales: l'étape des donnèes, celle du traitement et celle des paramètres. A chaque étape, la structure complexe de dépendance est atténuée par le conditionnement. Par exemple, le stade des données peut incorporer des erreurs de mesure ainsi que de multiples ensembles de données sous divers supports. Les stades du traitement et des paramétres peuvent admettre des processus spatiaux et spatio‐temporels ainsi que l'inclusion directe du savoir scientifique. L'article conclut par une discussion de quelques problèmes en suspens dans la modélisation hiérarchique des systèmes environnementaux, incluant le besoin de nouvelles approches de collaboration.

Suggested Citation

  • Christopher K. Wikle, 2003. "Hierarchical Models in Environmental Science," International Statistical Review, International Statistical Institute, vol. 71(2), pages 181-199, August.
  • Handle: RePEc:bla:istatr:v:71:y:2003:i:2:p:181-199
    DOI: 10.1111/j.1751-5823.2003.tb00192.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1751-5823.2003.tb00192.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1751-5823.2003.tb00192.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan R. Stroud & Peter Müller & Bruno Sansó, 2001. "Dynamic models for spatiotemporal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 673-689.
    2. Kaiser, Mark S. & Cressie, Noel, 2000. "The Construction of Multivariate Distributions from Markov Random Fields," Journal of Multivariate Analysis, Elsevier, vol. 73(2), pages 199-220, May.
    3. A S Mugglin & B P Carlin & L Zhu & E Conlon, 1999. "Bayesian Areal Interpolation, Estimation, and Smoothing: An Inferential Approach for Geographic Information Systems," Environment and Planning A, , vol. 31(8), pages 1337-1352, August.
    4. Patrick E. Brown & Gareth O. Roberts & Kjetil F. Kåresen & Stefano Tonellato, 2000. "Blur‐generated non‐separable space–time models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 847-860.
    5. Le, Nhu D. & Zidek, James V., 1992. "Interpolation with uncertain spatial covariances: A Bayesian alternative to Kriging," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 351-374, November.
    6. Montserrat Fuentes, 2002. "Spectral methods for nonstationary spatial processes," Biometrika, Biometrika Trust, vol. 89(1), pages 197-210, March.
    7. Huang, Hsin-Cheng & Cressie, Noel, 1996. "Spatio-temporal prediction of snow water equivalent using the Kalman filter," Computational Statistics & Data Analysis, Elsevier, vol. 22(2), pages 159-175, July.
    8. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    9. Patrick E. Brown & Peter J. Diggle & Martin E. Lord & Peter C. Young, 2001. "Space–time calibration of radar rainfall data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(2), pages 221-241.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Weitao & Arhonditsis, George B., 2009. "A Bayesian hierarchical framework for calibrating aquatic biogeochemical models," Ecological Modelling, Elsevier, vol. 220(18), pages 2142-2161.
    2. Guillermo Ferreira & Jorge Mateu & Emilio Porcu, 2018. "Spatio-temporal analysis with short- and long-memory dependence: a state-space approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 221-245, March.
    3. Oliver J Maclaren & Aimée Parker & Carmen Pin & Simon R Carding & Alastair J M Watson & Alexander G Fletcher & Helen M Byrne & Philip K Maini, 2017. "A hierarchical Bayesian model for understanding the spatiotemporal dynamics of the intestinal epithelium," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-23, July.
    4. Peter Guttorp, 2003. "Environmental Statistics—A Personal View," International Statistical Review, International Statistical Institute, vol. 71(2), pages 169-179, August.
    5. Thomas J Rodhouse & Kathryn M Irvine & Kerri T Vierling & Lee A Vierling, 2011. "Estimating Temporal Trend in the Presence of Spatial Complexity: A Bayesian Hierarchical Model for a Wetland Plant Population Undergoing Restoration," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-9, December.
    6. Devin S. Johnson & Brian M. Brost & Mevin B. Hooten, 2022. "Greater Than the Sum of its Parts: Computationally Flexible Bayesian Hierarchical Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 382-400, June.
    7. Springborn, Michael & Sanchirico, James N., 2013. "A density projection approach for non-trivial information dynamics: Adaptive management of stochastic natural resources," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 609-624.
    8. Maura Mezzetti, 2012. "Bayesian factor analysis for spatially correlated data: application to cancer incidence data in Scotland," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(1), pages 49-74, March.
    9. Sujit K. Sahu & Alan E. Gelfand & David M. Holland, 2010. "Fusing point and areal level space–time data with application to wet deposition," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 77-103, January.
    10. Sarkka, Aila & Renshaw, Eric, 2006. "The analysis of marked point patterns evolving through space and time," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1698-1718, December.
    11. Lionel Roques & Olivier Bonnefon, 2016. "Modelling Population Dynamics in Realistic Landscapes with Linear Elements: A Mechanistic-Statistical Reaction-Diffusion Approach," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
    12. Taghreed Alghamdi & Khalid Elgazzar & Taysseer Sharaf, 2021. "Spatiotemporal Traffic Prediction Using Hierarchical Bayesian Modeling," Future Internet, MDPI, vol. 13(9), pages 1-18, August.
    13. Hanna Meyer & Edzer Pebesma, 2022. "Machine learning-based global maps of ecological variables and the challenge of assessing them," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    14. Bourgeois, A. & Gaba, S. & Munier-Jolain, N. & Borgy, B. & Monestiez, P. & Soubeyrand, S., 2012. "Inferring weed spatial distribution from multi-type data," Ecological Modelling, Elsevier, vol. 226(C), pages 92-98.
    15. Manago, Kimberly F. & Hogue, Terri S. & Porter, Aaron & Hering, Amanda S., 2019. "A Bayesian hierarchical model for multiple imputation of urban spatio-temporal groundwater levels," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 44-51.
    16. Bakian, Amanda V. & Sullivan, Kimberly A. & Paxton, Eben H., 2012. "Elucidating spatially explicit behavioral landscapes in the Willow Flycatcher," Ecological Modelling, Elsevier, vol. 232(C), pages 119-132.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Rodrigues & Peter J. Diggle, 2010. "A Class of Convolution‐Based Models for Spatio‐Temporal Processes with Non‐Separable Covariance Structure," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 553-567, December.
    2. Marcelo Cunha & Dani Gamerman & Montserrat Fuentes & Marina Paez, 2017. "A non-stationary spatial model for temperature interpolation applied to the state of Rio de Janeiro," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 919-939, November.
    3. Joaquim Henriques Vianna Neto & Alexandra M. Schmidt & Peter Guttorp, 2014. "Accounting for spatially varying directional effects in spatial covariance structures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 103-122, January.
    4. David O'Donnell & Alastair Rushworth & Adrian W. Bowman & E. Marian Scott & Mark Hallard, 2014. "Flexible regression models over river networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 47-63, January.
    5. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    6. Chiranjit Mukherjee & Prasad Kasibhatla & Mike West, 2014. "Spatially varying SAR models and Bayesian inference for high-resolution lattice data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 473-494, June.
    7. J. Zhu & J. C. Eickhoff & P. Yan, 2005. "Generalized Linear Latent Variable Models for Repeated Measures of Spatially Correlated Multivariate Data," Biometrics, The International Biometric Society, vol. 61(3), pages 674-683, September.
    8. Kim, Yongku & Berliner, L. Mark, 2016. "Change of spatiotemporal scale in dynamic models," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 80-92.
    9. Philipp Otto & Wolfgang Schmid & Robert Garthoff, 2021. "Stochastic properties of spatial and spatiotemporal ARCH models," Statistical Papers, Springer, vol. 62(2), pages 623-638, April.
    10. Andrew O. Finley & Sudipto Banerjee & Patrik Waldmann & Tore Ericsson, 2009. "Hierarchical Spatial Modeling of Additive and Dominance Genetic Variance for Large Spatial Trial Datasets," Biometrics, The International Biometric Society, vol. 65(2), pages 441-451, June.
    11. Huang, H.-C. & Martinez, F. & Mateu, J. & Montes, F., 2007. "Model comparison and selection for stationary space-time models," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4577-4596, May.
    12. Lyndsay Shand & Bo Li, 2017. "Modeling nonstationarity in space and time," Biometrics, The International Biometric Society, vol. 73(3), pages 759-768, September.
    13. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, August.
    14. Liang, Shengde & Banerjee, Sudipto & Bushhouse, Sally & Finley, Andrew O. & Carlin, Bradley P., 2008. "Hierarchical multiresolution approaches for dense point-level breast cancer treatment data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2650-2668, January.
    15. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    16. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    17. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    18. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    19. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    20. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:71:y:2003:i:2:p:181-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.