A Review of Classification Problems and Algorithms in Renewable Energy Applications
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Croonenbroeck, Carsten & Dahl, Christian Møller, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Energy, Elsevier, vol. 73(C), pages 221-232.
- Mahela, Om Prakash & Shaik, Abdul Gafoor & Gupta, Neeraj, 2015. "A critical review of detection and classification of power quality events," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 495-505.
- Cheng, Hsu-Yung & Yu, Chih-Chang, 2015. "Multi-model solar irradiance prediction based on automatic cloud classification," Energy, Elsevier, vol. 91(C), pages 579-587.
- Mario E. Berges & Ethan Goldman & H. Scott Matthews & Lucio Soibelman, 2010. "Enhancing Electricity Audits in Residential Buildings with Nonintrusive Load Monitoring," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 844-858, October.
- Behera, Sasmita & Sahoo, Subhrajit & Pati, B.B., 2015. "A review on optimization algorithms and application to wind energy integration to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 214-227.
- Croonenbroeck, Carsten & Møller Dahl, Christian, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Discussion Papers 351, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
- Lee, Yoonkyung & Lin, Yi & Wahba, Grace, 2004. "Multicategory Support Vector Machines: Theory and Application to the Classification of Microarray Data and Satellite Radiance Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 67-81, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chengcheng Gu & Hua Li, 2022. "Review on Deep Learning Research and Applications in Wind and Wave Energy," Energies, MDPI, vol. 15(4), pages 1-19, February.
- Salcedo-Sanz, S. & Cornejo-Bueno, L. & Prieto, L. & Paredes, D. & García-Herrera, R., 2018. "Feature selection in machine learning prediction systems for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 728-741.
- Kewei Cai & Belema Prince Alalibo & Wenping Cao & Zheng Liu & Zhiqiang Wang & Guofeng Li, 2018. "Hybrid Approach for Detecting and Classifying Power Quality Disturbances Based on the Variational Mode Decomposition and Deep Stochastic Configuration Network," Energies, MDPI, vol. 11(11), pages 1-18, November.
- Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
- Bo Chen & Ping Wang & Yifeng Wang & Wei Li & Fuqiang Han & Shuhuai Zhang, 2017. "Comparative Analysis and Optimization of Power Loss Based on the Isolated Series/Multi Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(10), pages 1-26, October.
- Sunme Park & Soyeong Park & Myungsun Kim & Euiseok Hwang, 2020. "Clustering-Based Self-Imputation of Unlabeled Fault Data in a Fleet of Photovoltaic Generation Systems," Energies, MDPI, vol. 13(3), pages 1-16, February.
- Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
- Prince Waqas Khan & Yung-Cheol Byun & Sang-Joon Lee & Dong-Ho Kang & Jin-Young Kang & Hae-Su Park, 2020. "Machine Learning-Based Approach to Predict Energy Consumption of Renewable and Nonrenewable Power Sources," Energies, MDPI, vol. 13(18), pages 1-16, September.
- Cheng-Shan Wang & Wei Li & Yi-Feng Wang & Fu-Qiang Han & Bo Chen, 2017. "A High-Efficiency Isolated LCLC Multi-Resonant Three-Port Bidirectional DC-DC Converter," Energies, MDPI, vol. 10(7), pages 1-22, July.
- Nilsa Duarte da Silva Lima & Irenilza de Alencar Nääs & João Gilberto Mendes dos Reis & Raquel Baracat Tosi Rodrigues da Silva, 2020. "Classifying the Level of Energy-Environmental Efficiency Rating of Brazilian Ethanol," Energies, MDPI, vol. 13(8), pages 1-16, April.
- Tasos Stylianou & Konstantinos Ntelas, 2023. "Impact of COVID-19 Pandemic on Mental Health and Socioeconomic Aspects in Greece," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
- Peláez-Rodríguez, C. & Pérez-Aracil, J. & Fister, D. & Prieto-Godino, L. & Deo, R.C. & Salcedo-Sanz, S., 2022. "A hierarchical classification/regression algorithm for improving extreme wind speed events prediction," Renewable Energy, Elsevier, vol. 201(P2), pages 157-178.
- Mariana Syamsudin & Cheng-I Chen & Sunneng Sandino Berutu & Yeong-Chin Chen, 2024. "Efficient Framework to Manipulate Data Compression and Classification of Power Quality Disturbances for Distributed Power System," Energies, MDPI, vol. 17(6), pages 1-20, March.
- Alvaro Furlani Bastos & Surya Santoso, 2021. "Optimization Techniques for Mining Power Quality Data and Processing Unbalanced Datasets in Machine Learning Applications," Energies, MDPI, vol. 14(2), pages 1-21, January.
- Carlos Ruiz & Carlos M. Alaíz & José R. Dorronsoro, 2020. "Multitask Support Vector Regression for Solar and Wind Energy Prediction," Energies, MDPI, vol. 13(23), pages 1-21, November.
- Marcelo Bruno Capeletti & Bruno Knevitz Hammerschmitt & Renato Grethe Negri & Fernando Guilherme Kaehler Guarda & Lucio Rene Prade & Nelson Knak Neto & Alzenira da Rosa Abaide, 2022. "Identification of Nontechnical Losses in Distribution Systems Adding Exogenous Data and Artificial Intelligence," Energies, MDPI, vol. 15(23), pages 1-23, November.
- Arcos Jiménez, Alfredo & Zhang, Long & Gómez Muñoz, Carlos Quiterio & García Márquez, Fausto Pedro, 2020. "Maintenance management based on Machine Learning and nonlinear features in wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 316-328.
- Artyom V. Gorchakov & Liliya A. Demidova & Peter N. Sovietov, 2023. "Analysis of Program Representations Based on Abstract Syntax Trees and Higher-Order Markov Chains for Source Code Classification Task," Future Internet, MDPI, vol. 15(9), pages 1-28, September.
- Khalfan Al Kharusi & Abdelsalam El Haffar & Mostefa Mesbah, 2022. "Fault Detection and Classification in Transmission Lines Connected to Inverter-Based Generators Using Machine Learning," Energies, MDPI, vol. 15(15), pages 1-23, July.
- Raffaele Cioffi & Marta Travaglioni & Giuseppina Piscitelli & Antonella Petrillo & Fabio De Felice, 2020. "Artificial Intelligence and Machine Learning Applications in Smart Production: Progress, Trends, and Directions," Sustainability, MDPI, vol. 12(2), pages 1-26, January.
- Wolfram Rozas & Rafael Pastor-Vargas & Angel Miguel García-Vico & José Carpio, 2023. "Consumption–Production Profile Categorization in Energy Communities," Energies, MDPI, vol. 16(19), pages 1-27, October.
- Arcos Jiménez, Alfredo & Gómez Muñoz, Carlos Quiterio & GarcÃa Márquez, Fausto Pedro, 2019. "Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 2-12.
- Hongyu Li & Ping Ju & Chun Gan & Feng Wu & Yichen Zhou & Zhe Dong, 2018. "Stochastic Stability Analysis of the Power System with Losses," Energies, MDPI, vol. 11(3), pages 1-11, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Song, MengXuan & Wu, BingHeng & Chen, Kai & Zhang, Xing & Wang, Jun, 2016. "Simulating the wake flow effect of wind turbines on velocity and turbulence using particle random walk method," Energy, Elsevier, vol. 116(P1), pages 583-591.
- Croonenbroeck, Carsten & Stadtmann, Georg, 2015. "Minimizing asymmetric loss in medium-term wind power forecasting," Renewable Energy, Elsevier, vol. 81(C), pages 197-208.
- Croonenbroeck, Carsten & Ambach, Daniel, 2014. "Censored spatial wind power prediction with random effects," Discussion Papers 362, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
- Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.
- Croonenbroeck, Carsten & Ambach, Daniel, 2015. "Censored spatial wind power prediction with random effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 613-622.
- Ziel, Florian & Croonenbroeck, Carsten & Ambach, Daniel, 2016. "Forecasting wind power – Modeling periodic and non-linear effects under conditional heteroscedasticity," Applied Energy, Elsevier, vol. 177(C), pages 285-297.
- Croonenbroeck, Carsten & Ambach, Daniel, 2014. "A comparison of different wind power forecasting models to the Mycielski approach," Discussion Papers 355, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
- Piotr Powroźnik & Paweł Szcześniak & Łukasz Sobolewski & Krzysztof Piotrowski, 2022. "Novel Functionalities of Smart Home Devices for the Elastic Energy Management Algorithm," Energies, MDPI, vol. 15(22), pages 1-17, November.
- Marčiukaitis, Mantas & Žutautaitė, Inga & Martišauskas, Linas & Jokšas, Benas & Gecevičius, Giedrius & Sfetsos, Athanasios, 2017. "Non-linear regression model for wind turbine power curve," Renewable Energy, Elsevier, vol. 113(C), pages 732-741.
- Jannik Schütz Roungkvist & Peter Enevoldsen, 2020. "Timescale classification in wind forecasting: A review of the state‐of‐the‐art," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 757-768, August.
- Zhongrong Zhang & Yiliao Song & Feng Liu & Jinpeng Liu, 2016. "Daily Average Wind Power Interval Forecasts Based on an Optimal Adaptive-Network-Based Fuzzy Inference System and Singular Spectrum Analysis," Sustainability, MDPI, vol. 8(2), pages 1-30, January.
- Croonenbroeck, Carsten & Hüttel, Silke, 2017. "Quantifying the economic efficiency impact of inaccurate renewable energy price forecasts," Energy, Elsevier, vol. 134(C), pages 767-774.
- Daniel Ambach & Carsten Croonenbroeck, 2016. "Space-time short- to medium-term wind speed forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 5-20, March.
- Daniel Ambach & Carsten Croonenbroeck, 2016. "Space-time short- to medium-term wind speed forecasting," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 5-20, March.
- Nantian Huang & Hua Peng & Guowei Cai & Jikai Chen, 2016. "Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm," Energies, MDPI, vol. 9(11), pages 1-21, November.
- Yoonkyung Lee, 2014. "Comments on: Support vector machines maximizing geometric margins for multi-class classification," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 852-855, October.
- Vojtech Blazek & Michal Petruzela & Tomas Vantuch & Zdenek Slanina & Stanislav Mišák & Wojciech Walendziuk, 2020. "The Estimation of the Influence of Household Appliances on the Power Quality in a Microgrid System," Energies, MDPI, vol. 13(17), pages 1-21, August.
- Azcarate, I. & Gutierrez, J.J. & Lazkano, A. & Saiz, P. & Redondo, K. & Leturiondo, L.A., 2016. "Towards limiting the sensitivity of energy-efficient lighting to voltage fluctuations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1384-1395.
- Crystal T. Nguyen & Daniel J. Luckett & Anna R. Kahkoska & Grace E. Shearrer & Donna Spruijt‐Metz & Jaimie N. Davis & Michael R. Kosorok, 2020. "Estimating individualized treatment regimes from crossover designs," Biometrics, The International Biometric Society, vol. 76(3), pages 778-788, September.
- Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
More about this item
Keywords
classification algorithms; machine learning; renewable energy; applications;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:607-:d:75196. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.